Double beta decay experiments-ll

Or how it was done in past years

Current picture

I will focus more on these five best limits, but there are other experiments worth mentioning...

First claims on observation

- Already in1950, Inghram and Reynolds detected the 2 β decay of ¹³⁰Te and obtained T_{1/2} = 1.4 × 10²¹ yr.
- Method: isotopic analysis of xenon extracted from geologically old tellurium ores
- This result was initially not considered seriously, but it became clear after 15-20 yr that $2\beta(2\nu)$ decay was indeed observed for the first time!

Double Beta-Decay of Te¹³⁰

MARK G. INGHRAM AND JOHN H. REYNOLDS University of Chicago and Argonne National Laboratory, Chicago, Illinois April 27, 1950

First source=detector test

- 1966: crystal scintillator
- Also enriched!
- No observation of $2\nu 2\beta$, only limit
- Too much contamination in the crystals

Limits for Lepton-Conserving and Lepton-Nonconserving Double Beta Decay in Ca48

E. der Mateosian and M. Goldhaber

Phys. Rev. 146, 810

First direct observation

- Tracko-calorimetric technique
- Foil source with 14g of ⁸²Se
- TPC with magnetic field
- 7960 h of life-time

FIG. 1. The observed sum-energy spectrum of two-electron events. A threshold of 800 keV was imposed on the sum energy of the events, and a threshold of 150 keV was imposed on the single energy. The curve is the theoretical $\beta\beta(2\nu)$ sum-energy spectrum normalized to 1.1×10^{20} yr.

Neutrinoless double beta decay discoveries

- First discovery: 1949, 2.6σ significance with ¹²⁴Sn! In reality, some contamination...
- 1992-1994: background peak at 2527 keV in ⁷⁶Ge experiment: "Due to relevance that this peak would have in the present and future experiment on ¹³⁰Te, we have re-analized this spectrum in collaboration with the Neuchatel group ... We found unambiguously that a peak at 2527 keV was generated ... by the early saturation of amplifier number six, which was defective in the last part of the experiment"
- The most famous: "Klapdor claim" with Heidelberg-Moscow experiment

V. Tretyak: False Starts in History of Searches for 2β Decay, or Discoverless Double Beta Decay: https://doi.org/10.48550/arXiv.1112.4183

Tracko-calorimetric detector: NEMO-3

- Reconstruction of the final state topology and particle identification
- ©Precise background identification and measurement
- Possible discrimination of mechanism behind 0vββ process

Elimited energy resolution Restricted exposure

NEMO-3 strategy

- Main focus on 100-Mo, but try to collect them all!
- 7 isotopes and 8 years (2003-2011)

NEMO-3 detector

- Wire drift chamber: 6180 Geiger cells, $\sigma_{vertex} = 3 \text{ mm} (XY)$, 10 mm (Z)
- Calorimeter: 1940 polystyrene scintillators coupled with low radioactivity PMTs, FWHM ~15 % at 1 MeV
- 25 Gauss magnetic field for the charge identification
- Gamma and neutron shields, anti-radon tent

NEMO-3 backgrounds

• What can mimic the $0\nu 2\beta$ tracks?

Internal bkg:

 $2\nu 2\beta$ tail and radioactive impurities inside the source foil

External bkg: Radioactive impurities of the detector

NEMO-3 results: Mo-100

- The "main" isotope
- Measurment of angular distributions
- SSD vs HSD

NEMO-3 results

- Best limits and precision measurements on $2\nu 2\beta$ for most isotopes
- First observation of $2\nu 2\beta$ to excited state!

NEMO-3 eey ¹⁵⁰Nd, 36.6 g, 5.25 yr

NEMO-3 2v2β measurements

• At a time, best measurements for many isotopes, also limits on $0\nu 2\beta$, limits on Majoron mode Measurement of double beta decay of 150 Nd to the 0^+_{+} excited state of 150 Sm in NEMO-3 (arXiv 2203.03356), 21 July 2023 Abstract

Isotope	Mass [g]	\mathbf{Q}_{etaeta} [keV]	${f T}_{1/2} \ [{f 10}^{19}] \ {f yrs}$	Comments	Search for Periodic Modulations of the Rate of Double-Beta Decay of ¹⁰⁰ Mo in the Detector Phys. Rev. C 104, L061601 (2021) (arXiv 2011.07657), 15 November 2020 Abstract Search for the double-beta decay of ⁸² Se to the excited states of ⁸² Kr with NEMC Nucl. Phys. A 996, 121701 (arXiv 2001.06388), 01 April 2020 Abstract
$^{100}\mathbf{Mo}$	6914	3034	0.71 ± 0.05	World's Best	Detailed studies of ¹⁰⁰ Mo two-neutrino double beta decay in NEMO-3 <i>Eur. Phys. J. C (2019)</i> 79: 440 (arXiv 1903.08084), 24 May 2019 Abstract
82 Se	932	2996	10.07 ± 0.56	World's Best	 Final results on ⁸²Se double beta decay to the ground state of ⁸²Kr from the NEMC <i>Eur. Phys. J. C (2018) 78: 821</i> (arXiv 1806.05553), 16 October 2018 Abstract Search for Neutrinoless Quadruple-β Decay of ¹⁵⁰Nd with the NEMO-3 Detector <i>Phys. Rev. Lett. 119, 041801</i> (arXiv 1705.08847), 24 July 2017 Abstract
130 Te	454	2528	70 ± 14	World's Best & First (Direct)	Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd w 3 detector Phys. Rev. D 95, 012007 (arXiv 1610.03226), 17 January 2017 Abstract
$^{116}\mathbf{Cd}$	410	2814	2.74 ± 0.18	World's Best	Measurement of the 2νββ decay half-life of ¹⁵⁰ Nd and a search for 0νββ decay proc full exposure from the NEMO-3 detector <i>Phys. Rev. D</i> 94, 072003 (arXiv 1606.08494), 11 October 2016 Abstract
150 Nd	37	3371	0.934 ± 0.066	World's Best	Measurement of the double-beta decay nar-life and search for the neutrinoless dou decay of ⁴⁸ Ca with the NEMO-3 detector <i>Phys. Rev. D</i> 93, <i>112008</i> (arXiv 1604.01710), 14 June 2016 Abstract Results of the search for neutrinoless double- β decay in ¹⁰⁰ Mo with the NEMO-3 ex <i>Phys. Rev. D</i> 92, <i>072011</i> (arXiv 1506.05825), 21 October 2015 Abstract
$^{96}\mathbf{Zr}$	9.4	3350	2.35 ± 0.21	World's First & Best	Search for neutrinoless double-beta decay of ¹⁰⁰ Mo with the NEMO-3 detector <i>Phys. Rev. D</i> 89, <i>111101(R)</i> (arXiv 1506.05825), 12 June 2014 Abstract
					Investigation of double beta decay of ¹⁰⁰ Mo to excited states of ¹⁰⁰ Ru Nucl. Phys. A 925 (2014) 25 (arXiv 1402.7196), 07 February 2014 Abstract
48 Ca	7	4272	6.4 ± 1.4	World's Best	Measurement of the $\beta\beta$ Decay Half-Life of 130 Te with the NEMO-3 Detector Phys. Rev. Lett. 107, 062504 (arXiv 1104.3716), 04 August 2011 Abstract
		1			Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO Nucl.Phys.A847:168-179 (arXiv 0906.2694), 08 December 2010 Abstract
Status as of 2017					Measurement of the Double Beta Decay Half-life of $^{ m 150}$ Nd and Search for Neutrinole

Measurement of the Double Beta Decay Half-life of 150 Nd and Search for Neutrinoless Decay Modes with the NEMO-3 Detector

https://supernemo.org/publications.html

Ge-76 experiments

Popular approach thanks to abundance of HPGe detectors: well known and highly performant technology

Highly radiopure detectors

Made entirely from Ge, with enrichment - high mass and efficiency

- \bigotimes One of the lowest phase-space factors among popular isotopes - need to reach higher half-life limits for same sensitivity on m_{BB}

The Search for Double Beta Decay With Germanium Detectors: Past, Present, and Future, https://doi.org/10.3389/fphy.2019.00006

Neutrinoless Double Beta Decay with Germanium Detectors: 1026 yr and Beyond. Universe 2021, 1, 341. https://doi.org/10.3390/universe7090341

HPGe detectors

- Single-crystal semiconductor diode made from enriched Ge
- Best energy resolution on the market 0.1% at Q_{bb}!
- Read out ionization signal pulse shape can be used to distinguish multi-site and surface events from 2β events - single channel PSD, a big advantage!

Progress in Ge-76 experiments

Big technological progress during the years:

- Enrichment
- Crystal growth quality
- HPGe detectors performance, PSD methods introduction

The Search for Double Beta Decay With Germanium Detectors: Past, Present, and Future, https://doi.org/10.3389/fphy.2019.00006

Claim of observation with ⁷⁶Ge

MPLA 16 (2001) 2409: 55.0 kg×y, no PSA, 2.2-3.1 σ effect T_{1/2} = 1.5_{-0.7}^{+16.8}×10²⁵ y

PLB 586 (2004) 198: 71.7 kg×y, no PSA, 4.2 σ effect T_{1/2} = 1.2_{-0.5}^{+3.0}×10²⁵

MPLA 21(2006)1547: PSA – 2 methods, 6.2σ effect $T_{1/2} = 2.23_{-0.31}^{+0.44} \times 10^{25}$ (final value)

Evolution of the claim in time due to reanalysis of the data.

Majorana experiment

Particular features:

- 58 HPGe detectors, mass of 44.8 kg (14.4 kg of nat and 29.7 kg enr to 88.1%)
- Grow underground electroformed copper, machining alo underground
- Low-mass low-noise low-background electronics:
- The best energy resolution of any $0v2\beta$ experiment at $Q_{2\beta} 2.5$ keV and a low energy threshold (1 keV)

Majorana limit

T_{1/2} > 8.3 × 10²⁵ yr (90% C.I.)

Background index: = $(6.23 \pm 0.55) \times 10^{-3} \operatorname{cts}/(\operatorname{keV} \operatorname{kg} \operatorname{yr})$

PRL 130 062501 (2023)

GERDA experiment

- GERmanium Detector Array (INFN-LNGS, Italy)
- 44.2 kg of Ge detectors
- Hybrid LAr light collection system: WLS fibers / SiPMs / PMTs
- Muon veto: water Cherenkov, scintillating panels
- Ultra radio-pure materials, small passive mass, deep underground

Clean room

Water

tank and **PMTs**

LAr active veto

 Extremely efficient rejection of Compton events with energy deposition in LAr

https://www.nature.com/articles/nature21717

Final result of GERDA

Best background index among all experiments:

Background index: = $(5.2^{+1.6}_{-1.3}) \times 10^{-4} \text{ cts/(keV kg yr)}$

Energy resolution ~3 keV $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% C.L.

Not the strongest limit on m_{bb} mainly due to low phase space factor and limited exposure

<u>54 PRL 125, 252502 (2020)</u>

R&Ds with solid state detectors

COBRA CdZnTe detector technology

- Several 2β isotopes ¹¹⁶Cd most promising
- Demonstrator: 64x1 cm³ detectors
- Recent upgrade: 9x 2x2x1.5 cm³ detectors

SELENA: Amorphous ⁸²Se x-ray detectors (0.2 mm thick)

- Stack to achieve high density, high mass array
- 5 μm pixel size gives full track reconstruction
- Very promising for background control

CANDLES: CaF₂ crystal scintillators
Limited energy resolution, 350 g of ⁴⁸Ca

Signals

JINST 12 (2017) P03022

Liquid scintillator detectors

Service and know-how from neutrino oscillation experiments

- 3 136-Xe in focus: reasonable $Q_{\beta\beta},$ gas is easy to handle in large amount both for enrichment and detctor
- [©]The easiest scalability among all the DBD experiments
- Over the second seco
- Solution $2\nu 2\beta$ background is dominant
- Good for limits, worse discovery

Kamland-ZEN

- Enriched Xenon diluted (3 wt%) in liquid scintillator exploiting the existing KamLAND detector with the addition of a nylon balloon
- Soluble to LS more than 3 wt%, easily extracted
- ¹³⁶Xe On-off
- Energy resolution: -4.5%@Qbb
- Single event position -Vertex resolution 15 cm/ $\sqrt{E(MeV)}$
- Backgrounds:

 - 2νββ decay of ¹³⁶Xe
 Xe-LS, IB and outer-LS radioactive impuritities
 - Cosmogenic: muon-spallation
 Solar neutrino ES

KamLAND-Zen 400

Nylon balloon R 1.54 m Xenon 320 - 380 kg

KamLAND-Zen 800 Nylon balloon R 1.90 m

Xenon 745 kg

Nylon baloon: background improvement

- Increase of sensitive volume by factor 3!
- ×10 reduction of IB ²¹⁴Bi
- Good example of radiopurity requirements

Z (m)

KamLAND-Zen 400

KamLAND-Zen 800

> ×3 sensitive volume !!

KamLAND-Zen final results

- Exposure: 970 kg×yr
- Best limit on $m_{\beta\beta}$ sensitivity: 36-156 meV

 $\Delta\chi^2$

 $T_{1/2}^{0v} > 2.3 \times 10^{26} \text{ yr}$

EXO-200

- Enriched liquid ¹³⁶Xe TPC
- First to detect $2\nu 2\beta$ of ¹³⁶Xe Discrimination between:
- Multi-site (MS) (background)

Single-site (SS) (including signal events)

NEXT

- High pressure (10-15 bar) enriched Xe TPC
- Primary scintillation ($t_0 \rightarrow z$ coordinate)
- Electroluminescence for en. res. (PMT plane) and for tracks (SiPM plane)
- $\Delta E < 1\%$ FWHM in the ROI (< 25 keV)
- Very clear topological signature

NEXT: on/off runs

- Measurements with enriched and depleted Xe
- Low exposure, but principle demonstrated next phase NEXT-100 starting

XENON-1t: observation of ECEC

- Detector built for Dark Matter searches with Xe TPC
- 3.2 t of natural Xe, ¹²⁴Xe for ECEC

$$T_{1/2}^{2\nu \text{ECEC}} = (1.8 \pm 0.5_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ y}$$

214 Ph

131mXe

Materials

2vECEC

Other projects with Xe

TPCs with variants:

Electroluminescence Light Collection Cell

- PANDA-X-III electron collection
- AXEL electroluminescence (EL)
- R2D2: high pressure spherical/cylindrical TPC

(ELCC) Z-axis e nm-pitch Z-axis MPPC X-axis Drift anode electrode TFE w/ holes Mesh electrode MPPC (photon sensor) array EDrift EEL X-axis ~2.5kV/cm/bar ~0.1kV/cm/bar

Bolometers for double beta decay searches

- Measurement of radiation via temperature change $\Delta T = \frac{E}{C}$
- Requires very low temperatures of operation to detect this change (~10-100 mK)
- The change itself is defined by heat capacity and released energy:

Bolometers for double beta decay searches

High energy resolution
 Flexibility in the absorber materals
 Advanced technologies for particle identification
 Scalable through arrays

Slow detectors (depending on sensor type)
 Detector size restricted by the size of the cryostat - scaling is not obvious

Typical sensors

- What do we need?
- Large change of "X" parameter depending on temperature
- Low heat capacity (absorber is dominant)
- Speed of signal depends on the type of phonons we are sensitive to

From 6g to 1t

• Significant progress since 1990 in cryogenic detectors: stability, size,

CUORE: the largest bolometric experiment

- CUORE: the Cryogenic Underground Observatory for Rare Events
- First ton scale array of cryogenic calorimeters: 988 TeO₂ crystals (0.75 kg each)
- CUORE cryogenic facility is an unprecendented techological challenge, which is now taking data in steady and reliable conditions

CUORE: the largest bolometric experiment

- Analyzed exposure: 2023 kg×yr
- $\Delta E_{\beta\beta} = 7.3 \pm 0.4$ keV at ROI (0.3%)
- BI=1.30(3) × 10⁻² counts/kev/kg/yr

Half-life limit: $T_{1/2}^{0\nu} > 3.33 \times 10^{25} yr (90\% C.I.)$

Effective Majorana mass limit: $m_{\beta\beta} < 75 - 255 \, meV$

Particle discrimination with bolometers

- Scintillation:
- Alphas and nuclear recoils emit in general a different amount of light with respect to beta/gamma of the same energy
- Particle discrimination using **light for** α rejection

CUPID-0 demonstrator (82Se)

- The first pilot experiment for CUPID with scintillating bolometers in LNGS
- 95% enriched Zn⁸²Se bolometers (5.17 kg of ⁸²Se, Q_{ββ}=2998 keV)

Shape Parameter (A.

CUPID-0 results

- Successfull demonstration of advantages of dual-readout technique
- High scientific potential: best limit on 0n2b, most precise measurement of ⁸²Se 2v2β, CPT violation search, SSD vs HSD, excited states

CUPID-0 results

FWHM @ $Q_{\beta\beta}$ =20.05 ± 0.34 keV

- Successfull demonstration of advantages of dual-readout technique
- High scientific potential: best limit on 0n2b, most precise measurement of ⁸²Se 2v2β, CPT violation search, SSD vs HSD, excited states

Energy [keV]

CUPID-Mo

- Li₂¹⁰⁰MoO₄ scintillating crystals high energy resolution and radiopurity, array of 20 modules at LSM
- Total of 2.26 kg of ¹⁰⁰Mo, $Q_{\beta\beta}$ = 3034 keV

45

CUPID-Mo features

- Excellent internal radiopurity of crystals: ²¹⁰Po and U/Th well within CUPID requirements
- Anticoincidence, light yield and pulse shape cuts applied for background reduction

CUPID-Mo results

- Excellent performance and radiopurity chosen for ton-scale experiment
- Best limit on ¹⁰⁰Mo $0v2\beta$ half-life, the most precise measurement of ¹⁰⁰Mo $2\nu 2\beta$ and excited states

CUPID-Mo results

AMoRE-I

- Exploiting ¹⁰⁰Mo with CaMoO₃ and LiMoO₃ scintillating bolometers, total mass of ¹⁰⁰Mo 3 kg
- MMC sensors for both heat and light
- Background = 0.032 ± 0.003 counts/keV/kg/year
- New most stringent limit on T_{1/2} for ¹⁰⁰Mo

R&Ds with cryogenic detectors

- ¹¹⁶Cd, ⁴⁸Ca: scintillating bolometers, single detector tests, high contamination of the crystals
- ¹²⁴Sn bolometers: microcalorimeter prototype, tin pest problem for scaling

R&Ds with cryogenic detectors

¹⁰⁰Mo: background rejection methods for ton-scale:

 CROSS: single-channel surface sensitive detectors

 Bingo: geometrical bkg reduction, cryogenic veto, enhanced light detectors

Summary

- Last decade was definetely fruitful for DBD experiments
- Zero-background approach desired for next generation
- We understand well which sensitivities are reachable
- A lot of technological developments on the table
- Scaling is ongoing...

