
Double beta decay 
experiments-I

Or how to build a rare events experiment



Double beta decay
Theoretical prediction on 2n2b: 1935
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Physics beyond the SM
Several possible 
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Allowed by SM double decay modes
• Allowed when single beta decay is forbidden energetically or 

suppressed
• Requires even-even nuclei

Very rare

Even more rare



Double beta decay landscape
• More than 70 isotopes can undergo sertain mode of 2b decay...

Tables of double beta decay data: An update
V.I. Tretyak (Kiev, INR), Yuri G. Zdesenko (Kiev, INR)
DOI: 10.1006/adnd.2001.0873
Atom.Data Nucl.Data Tabl. 80 (2002), 83-116



Double beta decay landscape
• More than 70 isotopes can undergo sertain mode of 2b decay...

• But so far only small fraction
is used in experiments

• Very complicated for 
measurements due to 
rarity and backgrounds

Tables of double beta decay data: An update
V.I. Tretyak (Kiev, INR), Yuri G. Zdesenko (Kiev, INR)
DOI: 10.1006/adnd.2001.0873
Atom.Data Nucl.Data Tabl. 80 (2002), 83-116



Two-neutrino mode of double beta decay
• Second-order process -> strongly 

supressed, very long half-lifes

• First direct observation in 1987

• Half-lifes 1019-1024 yrs

B. Pritychenko, Nucl. Phys. A 1033 (2023) 122628



Why it is interesting anyway?
Nuclear models: 2n2b decay is described by two virtual b decay transitions:
• Single state dominance: 

1. the ground state of the initial nucleus to 1+
1intermediate state  

2. from the 1+
1state to the final ground state 

•  Higher state dominance:
• Same idea, but higher

intermediate states

• Important for detailing the
nuclear structure models

R. Saakyan, Two-Neutrino Double-Beta Decay, Ann. Rev. of Nuclear and Particle Science 2013 63:1, 503-529

https://www.annualreviews.org/doi/10.1146/annurev-nucl-102711-094904


Why it is interesting anyway?
• Insights for the nuclear structure models

• Information for nuclear matrix elements evaluation

Phase space, calculated exactly: Nuclear matrix elements, difficult to evaluate



Neutrinoless double beta decay
• Proposed by Furry in 1939 following Majorana theory  

on truly neutral particles (particle=antiparticle)

• Gained larger interest after 
neutrino oscillations discovery



Neutrinoless double beta decay

(A,Z)  (A,Z+2) + 2e-

Total lepton number 
violation → 

new physics beyond SM
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T1/2 (0n2b)>1026 yr
Extreme challenge for 

observation 



Neutrinoless double beta decay: exotic modes
• Hypothetical Goldstone boson
• Introduced to mediate lepton

number violation



Neutrino properties in abcence of neutrinos
What do we learn in case of observation? 

• Neutrinos are Majorana particles, not Dirac

• Fix the neutrino mass scale

• Confirm lepton number violation - new 
physics beyond the Standard Model

Whatever happens in 
the black box, 
neutrinos are 

Majorana particles!



Why we think neutrinoless mode should exist? 
• Natural extension of Standard Model, with 

Majorana mass term (in addition to Higgs 
mechanism)

• Two-component field -the most economical 

• Explain smallness of neutrino masses 
(See-saw mechanism)

• Can explain matter / antimatter asymmetry 
in the Universe (Leptogenesis, Sakharov 
conditions)



• Represent the distortion 
of the electronplane waves 
in the Coulomb field of 
the nucleus

• Can be calculated with 
high precision

Neutrinoless double beta decay rate
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Nuclear matrix elements

• Represent nuclear structure 
of the initial and final nuclei

• To calculate it exactly we 
need the full wavefunction of 
the nucleus before and after 
the decay:

• Main source of unsertanties 
for 0n2b experiments 
sensitivity

gA is the coupling to 
the nucleon
hard to compute 
(lattice QCD) but can 
be measured in other 
decays: quenching is 
not defined well

Effective Majorana mass, 
the unknown



Nuclear matrix elements calculations
• Historically, phenomenological models give 2-3x scatter
• This is a complex theory problem, but a lot of new developments are 

underway:

• Ab initio nuclear structure calculations 
to solve the many-body problem

• Develop reliable uncertainty 
estimates for computed NMEs

• Quantify the form of the relevant 
decay operators in EFT

• Lattice QCD and modeling to 
constrain coefficients



Effective majorana mass, neutrino mass and 0n2b
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the 0ν2β rate depends on:
• neutrino mixing angles
• neutrino masses 
• mass hierarchy
• 2 totally unknown phases (in case of light Majorana neutrino exchange)
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the 0ν2β rate depends on:
• neutrino mixing angles
• neutrino masses 
• mass hierarchy
• 2 totally unknown phases (in case of light Majorana neutrino exchange)

Effects of the Majorana phases

S. M. Bilenky, S. Pascoli, and S. T. Petcov
Phys. Rev. D 64, 053010 (2001)



0ν2β decay and neutrino masses
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0ν2β decay and neutrino masses
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Doesn’t seem like 
a lot, right?



0ν2β decay and neutrino masses
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Log scales are 
dangerous...



0ν2β decay and neutrino masses
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Not that bad 
progress!



 Experimental sensitivity for 0ν2β decay
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Signal: 
~10 counts/keV/ton

~1 count/keV/ton

~1 count/keV/10ton

T1/2: 
~1026 yr

~1027 yr

~1029 yr



 Experimental sensitivity for 0n2b decay
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And if we 
need to 
reach here?



Probability of discovery: evaluation
• Global Bayesan analysis including neutrino oscillations, tritium, double beta decay, 

cosmology
• Ignorance of the scale of the parameters  Scale-invariant prior distributions
Ø S = m1+m2+m3, Dmij

2: logarithmic
Ø Angles and phases in PMNS matrix: flat

Marginalized posterior distributions of mbb

Phys. Rev. D 96, 053001 (2017)



 mbb distribution in the parameter space

Next-generation most promising experiments 
have a high discovery potential:
The cumulative probability for mbb to be higher 
than 20 meV is 
Ø    1 for Inverted Ordering
Ø  0.5  for Normal Ordering

gA quenching has an important effect 
but not dramatic

30% gA quenching reduces the 
discover potential by 
Ø  15% for Inverted Ordering
Ø  25% for Normal Ordering

Probability densities and cumulative probabilities for mee

Phys. Rev. D 96, 053001 (2017)
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How to build a succesfull experiment?

Energy resolution
Better resolution -> 
narrower region of 

interest

Background 
zero bkg “boosts”

the sensitivity

Exposure
Large masses and a 

lot of patience

Isotope selection 
for experiment is very 

important

lim



Background sources for 0ν2β experiments
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This is around 0.1 Bq/g

Here we look for 3x10-14 Bq/g



Cosmic muons, neutrons and cosmogenic activation
• Going underground is not enough -

active 4π vetos are mandatory

Background sources for 0ν2β experiments

30 arXiv:2007.15925



Environmental γ’s, a’s and b’s
• Passive and active shielding
• Material screeing, radiopurity: levels of < 1 mBq / kg are required 

(ordinary materials - 1-100 Bq/kg)
• γ’s: select high Q-value isotopes, end-point of 

natural γ radioactivity is 2615 keV

Background sources for 0ν2β experiments

31

Natural g 
radioactivity 
endpoint: 2.6 

MeV



Environmental γ’s, a’s and b’s
• a’s and b’s: Develop advanced 

detectors with particle or/and impact-point identification
• Double read-out, events tagging: work on detector technology

Background sources for 0ν2β experiments
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High energy β decays

Qβ=5.0 MeV



2n2b decay: tail and pile-ups
• The only background that will be always present
• High energy and time resolution of the detectors helps to reduce it

Background sources for 0ν2β experiments

33https://doi.org/10.48550/arXiv.1502.00581



Resolution impact on sensitivity
• Defines the region of interest

https://doi.org/10.48550/arXiv.1502.00581

Simulation with 50 
counts for signal 

and bkg of 
1 count/keV. In 

reality, numbers 
will be much lower

1% FWHM 3.5% FWHM

10% FWHM



Background impact on sensitivity
Long half-lives mean
very big exposures

 
To see 3-4 counts of 
0ν2β at given T1/2:
• 1026 years: 100 kg/yr 
• 1027 years: 1 ton/yr
• 1028 years: 10 ton/yr

The Physics of Neutrinoless Double Beta Decay: A Primer, B.J.P. Jones



Practical considerations: isotopes
• 2β- mode is most suitable to search for observation of neutrinoless mode
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• High Qbb → lower background level 
in ROI and higher 0n2b decay rate



Decay rate predictions
• Let’s come back to this formula:
• The higher the better
• But NMEs are featuring huge uncertanties in calculations
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Rev. Mod. Phys. 95, 025002 (2023)
https://doi.org/10.1103/RevModPhys.95.025002



Practical considerations: isotopes
• 2β- mode is most suitable to search for observation of neutrinoless mode

• High Qbb → lower background level 
in ROI and higher 0n2b decay rate

• Large exposure - big mass:
natural abundance and possibility
of enrichment is important

End- point of natural γ radioactivity

End- point of natural β radioactivity



Enrichment capability
• Isotopic enrichmentby centrifugation - currently, the only viable 

large scale method
• Costs: 10-80 eur/g - big fraction of the total cost 

of the experiment
• Market of stable isotopes for medical applications
• Geopolitics impacts 

access to production:
Russian agression
in Ukraine impacts
some DBD experiments
directly



• 2β- mode is most suitable to search for observation of neutrinoless mode

• High Qbb → lower background level 
in ROI and higher 0n2b decay rate

• Large exposure - big mass:
natural abundance and possibility
of enrichment is important

• Finally, detector technology
for the most efficient measurement

Practical considerations: isotopes

End- point of natural β radioactivity

End- point of natural γ radioactivity

48Ca

150Nd96Zr

100Mo82Se
116Cd

130Te136Xe

76Ge

Enrichable by 
centrifugation



Indirect searches for 2β decay
• Identification and counting an excess of daughter nuclei 

• No distinguishing betwen 2ν and 0ν modes

• Were used for first confirmations of
double beta decay excistence, 
not so interesting for neutrino physics



Direct searches for DBD
• Two approaches:

Source≠detector Source=detector
☺ neat reconstruction of event topology: 

individual electron track recognition!
☺ several candidates can be studied with the same 

detector: isotope in the form of thin foil
× BUT: very hard to get large mass 

× main constraint: detector material - 
has to contain the isotope of interest 

☺ Ton-scale masses are possible
☺ Several detection techniques proposed with high resolution

and particle identification capability 



So, imagine you get a grant:



 Status of current searches
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Goal for the next generation of experiments

This is the scope of lecture II

This is the scope of lecture III


