Precision measurements of neutron beta decay II – Correlations –

Torsten Soldner
Institut Laue-Langevin
Grenoble, France
Experimentalist’s approach on neutron decay

• **What can we measure?** \(n \rightarrow p + e + \bar{\nu}_e \)
 - Neutron: spin direction \(\sigma_n \)
 - Proton: momentum \(p_p \)
 - Electron: momentum \(p_e \), spin direction \(\sigma_e \)
 - Neutrino: momentum \(p_\nu = -p_p + p_e \)

• **Possible correlations (this lecture):**
 - 6 twofold: \(\sigma_n \sigma_e \), \(\sigma_n p_e \), \(\sigma_n p_\nu \), \(p_e p_\nu \), ...
 - 4 threefold: \(\sigma_n (\sigma_e \times p_e) \), ...
 - 5 fourfold: \((\sigma_e p_e) (p_e p_\nu) \), ...
 - 1 fivefold: \((\sigma_e p_e) \sigma_n (p_e \times p_\nu) \)
 + Deformation of electron spectrum (Fierz term)

• **Further observables:**
 - Lifetime (lecture I)
 - Rare decay modes: \(n \rightarrow H + \bar{\nu}_e \) (branching ratio, H atomic states)
 \(n \rightarrow p + e + \bar{\nu}_e + \gamma \) (branching ratio, even more correlations)
Content

- Principles & Concepts & Tools & Examples
 - PERKEO \(n \): The quest for accuracy

- Status and outlook
The neutron alphabet

- \(\sigma_n, p_e, p_\nu \): Oriented neutrons, momenta of electron and neutrino
 \[
 dW(\langle \sigma_n \rangle | E_e, \Omega_e, \Omega_\nu) \propto G_E(E_e) \cdot \\
 \left\{ 1 + a \frac{p_e p_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \sigma_n \rangle}{\sigma_n} \left(A \frac{p_e}{E_e} + B \frac{p_\nu}{E_\nu} + D \frac{p_e \times p_\nu}{E_e E_\nu} \right) \right\}
 \]

- \(\sigma_e, p_e, p_\nu \): Spin and momentum of electron, momentum of neutrino
 \[
 dW(\langle \sigma_e \rangle | E_e, \Omega_e, \Omega_\nu) \propto G_E(E_e) \cdot \\
 \left\{ 1 + a \frac{p_e p_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \sigma_e \rangle}{\sigma_e} \left(G \frac{p_e}{E_e} + H \frac{p_\nu}{E_\nu} + K \frac{p_e}{E_e} + L \frac{p_e}{E_e} + m_e \frac{p_e p_\nu}{E_e E_\nu} + M \frac{p_e \times p_\nu}{E_e E_\nu} \right) \right\}
 \]

- \(\sigma_n, \sigma_e, p_e \): Oriented neutrons, momentum and spin of electron
 \[
 dW(\langle \sigma_n \rangle, \langle \sigma_e \rangle | E_e, \Omega_e) \propto G_E(E_e) \cdot \\
 \left\{ 1 + b \frac{m_e}{E_e} + \frac{\langle \sigma_n \rangle}{\sigma_n} A \frac{p_e}{E_e} + \frac{\langle \sigma_e \rangle}{\sigma_e} \left(G \frac{p_e}{E_e} + H \frac{p_\nu}{E_\nu} + K \frac{p_e}{E_e} + L \frac{p_e}{E_e} + m_e \frac{p_e}{E_e} + N \frac{\langle \sigma_n \rangle p_e}{E_n} + Q \frac{p_e}{E_e} + R \frac{\langle \sigma_n \rangle \times p_e}{\sigma_n E_e} \right) \right\}
 \]

- \(\sigma_n, \sigma_e, p_e, p_\nu \): Oriented neutrons, spin and momentum of electron, momentum of and neutrino
 \[
 dW(\langle \sigma_n \rangle, \langle \sigma_e \rangle | E_e, \Omega_e, \Omega_\nu) \propto G_E(E_e) \cdot \\
 \left\{ 1 + \text{All terms from above} + \frac{\langle \sigma_n \rangle}{\sigma_n} \left(S \frac{\langle \sigma_e \rangle p_e p_\nu}{E_e E_\nu} + T \frac{p_\nu \langle \sigma_e \rangle p_e}{E_\nu \sigma_e E_e} + U \frac{p_e \langle \sigma_e \rangle p_\nu}{E_e \sigma_e E_\nu} + V \frac{\langle \sigma_e \rangle \times p_\nu}{E_\nu \sigma_e E_\nu} + W \frac{\langle \sigma_e \rangle p_e}{E_e \sigma_e (E_e + m_e)} + p_e \times p_\nu \right) \right\}
 \]

Challenges in $n \rightarrow pev$, $m_n - m_p - m_e = 782$ keV

Proton energy $E_p < 751$ eV
- Sensitive to small electric fields
 - Control space charges
 - Control work functions of surfaces
 - Control field leakages
- Acceleration needed prior to detection
- Optimized detectors
 - Low noise, low thresholds, tiny dead layers
 - Specific technologies

Electron energy $E_e < 782$ keV
- Range of background from (n, γ), beta decays
 - Shielding
 - Magnetic fields for Signal/Background
 - Coincidences ($\Delta E-E$ detectors, proton)
- Exposed to backscattering by detector and scattering by windows/materials
 - Backscatter-suppression or detection
 - Proper design of spectrometer

Long lifetime $\tau_n \approx 880$ s
- Low decay rate, low statistics
- Low relative decay rate for cold neutrons
 - ~ 1000 m/s: $\sim 10^{-7}$/m
- All other neutrons can create background
 - Captures (n, γ), ...
 - Scattering from apertures $\sim 10^{-3}$
Detector geometry – principles

\[
dW (\langle \sigma_n \rangle | E_e, \Omega_e, \Omega_v) \propto G_E(E_e) \cdot \left\{ 1 + a \frac{p_e p_v}{E_e E_v} + b \frac{m_e}{E_e} + P \left(A \frac{p_e}{E_e} + B \frac{p_v}{E_v} + D \frac{p_e \times p_v}{E_e E_v} \right) \right\}
\]

\[
K_a = \int_{e\text{Det},p\text{Det}} G_E(E_e) \frac{p_e p_v}{E_e E_v} dE_e d\Omega_e d\Omega_v
\]

\[
K_b = \int_{e\text{Det},p\text{Det}} G_E(E_e) \frac{m_e}{E_e} dE_e d\Omega_e d\Omega_v
\]

Often analysis in function of \(E_e \) (i.e. \(K_i = K_i(E_e) \), no integration over \(E_e \))

\[
N_{e,p} \propto 1 + aK_a + bK_b + P(AK_A + BK_B + DK_D)
\]

Asymmetries with neutron spin:

\[
\alpha = \frac{N_{e,p}(P) - N_{e,p}(-P)}{N_{e,p}(P) + N_{e,p}(-P)} \cdot \frac{P(AK_A + BK_B + DK_D)}{1 + aK_a + bK_b}
\]

Goals of detector design:

- Maximize sensitivity to wanted coefficient \(i \)
 - Maximize \(K_i \)
 - Maximize statistics

- Suppress other coefficients
 - Suppress by symmetry or minimize \(K_{j \neq i} \)
Example D: Discrete symmetries and detector design

\[dW \propto 1 + D \frac{\langle \sigma_n \rangle p_e \times p_v}{\sigma_n E_e E_v} \]
Example D: Discrete symmetries and detector design

\[dW \propto 1 + D \left(\frac{\langle \sigma_n \rangle p_e \times p_v}{\sigma_n} \right) \frac{E_e E_v}{E_e E_v} \]

Principle Set-Up

\[\kappa_\xi = \frac{K_\xi}{1 + aK_a + bK_b} \]

\[\alpha = \frac{n_{ep} \circ - n_{ep} \otimes}{n_{ep} \circ + n_{ep} \otimes} = DP \kappa_D \]
Example D: Discrete symmetries and detector design

\[
dW(\langle \sigma_n \rangle | E_e, \Omega_e, \Omega_v) \propto G_E(E_e) \cdot \left\{ 1 + a \frac{p_e p_v}{E_e E_v} + b \frac{m_e}{E_e} + \frac{\langle \sigma_n \rangle}{\sigma_n} \left(A \frac{p_e}{E_e} + B \frac{p_v}{E_v} \right) + D \frac{\langle \sigma_n \rangle p_e \times p_v}{\sigma_n E_e E_v} \right\}
\]

P violating, asymmetry with spin flip

Principal Set-Up

[Diagram showing particle directions and rotations]

\[
\alpha = \frac{n_{ep} \bigcirc - n_{ep} \bigotimes}{n_{ep} \bigcirc + n_{ep} \bigotimes} = D \kappa_D + A \kappa_A + B \kappa_B
\]

\[
\kappa_\xi = \frac{K_\xi}{1 + aK_a + bK_b}
\]
Example D: Discrete symmetries and detector design

\[
\begin{align*}
 dW(\langle \sigma_n \rangle | E_e, \Omega_e, \Omega_\nu) & \propto G_E(E_e) \cdot \left\{ 1 + a \frac{p_e p_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \frac{\langle \sigma_n \rangle}{\sigma_n} \left(A \frac{p_e}{E_e} + B \frac{p_\nu}{E_\nu} \right) + D \frac{\langle \sigma_n \rangle p_e \times p_\nu}{\sigma_n E_e E_\nu} \right\}
\end{align*}
\]

P violating, asymmetry with spin flip

Principle Set-Up

Suppression of parity-violating correlations if detector setup and neutron volume share two orthogonal mirror planes

Breaking of symmetry \(\rightarrow\) Systematic effects

\[
\kappa_\xi = \frac{K_\xi}{1 + aK_a + bK_b}
\]

\[
D = \frac{\alpha^{00} - \alpha^{01} - \alpha^{10} + \alpha^{11}}{4P_\kappa^{00}}
\]
D: Detector design – Minimizing and maximizing

\leftarrow Minimize $\kappa_{A,B}/\kappa_D$

\downarrow Maximize Figure of merit $w(P\kappa_D)^2$
$D: \text{ Status}$

Trine

- Electron tracking

![Diagram of MWPC and detector setup]

Leading systematics:
- Inhomogeneity of MWPC
- Asymmetry of beam profile
- Asymmetry of scintillator

$$D = (-2.8^{+6.4}_{-3.0}\text{stat}^{+3.0}_{-2.8}\text{syst}) \cdot 10^{-4}$$

emiT

- Fully exploits geometrical optimization

![Diagram of emiT detector layout]

Measurements of “0” systematically easier than absolute measurements:
- One “just” needs a symmetric detector
- Most systematic effects scale with the measured asymmetry

Theory says: EDMs are more sensitive than TRI searches in n decay ... 😞
How to measure spin asymmetries

\[dW(P_n|E_e, \Omega_e) \propto G_E(E_e) \cdot \left(1 + A \frac{P_n p_e}{E_e}\right) \]

(observe only electron \(\rightarrow\) \(\Omega_v\) integrated out. \(\frac{\langle \sigma_n \rangle}{\sigma_n} \equiv P_n\))

\[N_{\uparrow\downarrow}(E_e) = \text{const} \cdot G_E(E_e) \cdot \int_{\text{Det}} \left\{1 \pm A P_n \beta(E_e) \cos(\mathcal{A}(P_n, p_e))\right\} d\Omega_e \]

\[\frac{N_{\uparrow\uparrow} - N_{\downarrow\downarrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow}}(E_e) = A \beta(E_e) k P_n \]

We need:

- Polarization \(P_n\)
- Identical polarization (and amount of neutrons) in both states
- Precise detector solid angle with respect to polarized neutrons \(k\)
- Electron energy \(\beta = \beta(E_e)\)

If flipping efficiency (probability that a spin gets flipped) \(f < 1\):

- Polarization after flipper: \(P_\parallel = -(2f - 1)P_\uparrow\)
- Resulting asymmetry:

\[\frac{N_{\uparrow\uparrow} - N_{\downarrow\downarrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow}} = A \beta k P_n f \cdot \left[1 - A \beta k P_n (1 - f) + \mathcal{O}(A \beta k P_n (1 - f)^2)\right] \]

Sensitive to neutron flux variations in first order!
How to measure spin asymmetries

\[dW(P_n|E_e, \Omega_e) \propto G_E(E_e) \cdot \left(1 + A \frac{P_n p_e}{E_e}\right) \]

(observe only electron \(\rightarrow \Omega_v \) integrated out. \(\frac{\langle \sigma_n \rangle}{\sigma_n} \equiv P_n \))

\[N_{\uparrow1}(E_e) = \text{const} \cdot G_E(E_e) \cdot \int \{1 + AP_n\beta(E_e)\cos(4(P_n, p_e))\} d\Omega_e \]

\[k_i = k(\text{Det } i, \text{Beam}) = \int_{\text{Det } i} \cos(4(P_n, p_e)) d\Omega_e \]

We need:

- Polarization \(P_n \)
- 2 identical detectors (same efficiency, same response)
- Precise detector solid angle with respect to polarized neutrons \(k \)
- Electron energy \(\beta = \beta(E_e) \)

With different detectors \(k_i \):

\[\bar{k} \equiv \frac{k_1 + k_2}{2}, \Delta_{k,rel} \equiv \frac{k_1 - k_2}{k_1 + k_2} \]

- Resulting asymmetry:

\[\frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = A\beta P_n \cdot \left[1 - A\beta \bar{k}P_n \Delta_{k,rel} + \mathcal{O}((A\beta \bar{k}P_n \Delta_{k,rel})^2)\right] \]

Insensitive to neutron flux variations!

But to Det1≠Det2
How to measure spin asymmetries

Two detectors + neutron spin flipping

Det1

\[
A_{exp,1} \equiv \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = A\beta k_1 P_n f
\]

Det2

\[
A_{exp,2} \equiv \frac{N_{\downarrow\downarrow} - N_{\downarrow\uparrow}}{N_{\downarrow\downarrow} + N_{\downarrow\uparrow}} = -A\beta k_2 P_n f
\]

Note: for D this applies, too:

→ Measures both signs of the asymmetry at the same time

• **Analysis by detector, arithmetic average of both results** \(A = \frac{A_1 + A_2}{2} \) or joint fit

→ Suppresses neutron flux fluctuations in first order

→ Compensates some systematics (e.g. shift of beam towards one detector), depending on experiment

• **Super-ratio of detector rates**:

\[
A_{SR} = \frac{1 - R}{1 + R} = A\beta k P_n, \quad R = \frac{N_{\uparrow\uparrow} N_{\downarrow\uparrow}}{N_{\uparrow\downarrow} N_{\downarrow\uparrow}}
\]

→ Neutron flux fluctuations fully cancel

• Both have similar sensitivity to \(\Delta_k \) and to \(f < 1 \)
Cold neutron polarization in a nutshell

Magnetic mirrors and supermirrors

\[
U = U_{\text{opt}} \mp \mu_n B \\
O(10^{-7}\text{eV}) \quad O(10^{-7}\text{eV}) \quad 10^{-7}\text{eV}
\]

- No passage without reflection
- Typical performance: \(P_{\text{Beam}} \approx 98\%\)

Increase critical angle

Match index of refraction

Polarizing benders

- No passage without reflection
- Typical performance: \(\langle P \rangle \approx 98\%\)

\[
q_0, \Delta q = q_0, \Delta q(\lambda, \theta)
\]

\(P\) wavelength dependent

\(P\) angle dependent

(Average accepted \(\theta\)) \(\lambda\)

(Average accepted \(\lambda\)) \(\theta\)
Neutron polarization and systematics

Beam average may not be relevant!

\[dW \propto 1 + A \frac{P_n p_e}{E_e} \]

\[\frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} \propto A \left(\int_{\text{Det}} P_n p_e d\Omega_e \right) \]

Neutron beams are large, divergent, inhomogeneous

Solutions

1) Detector averages beam (requires mag field)

Detector average of \(P \)

 Beam average of \(P \) \uparrow

 Beam average of \(P \) \uparrow

2) “Perfect” polarization (here: homogeneous)

Detector average of \(P \)

 Beam average of \(P \) \uparrow

 Beam average of \(P \) \uparrow
(Almost) perfect polarization

X-SM geometry

\[P_X = \frac{P_1 + P_2}{1 + P_1 P_2} \approx 1 - \frac{1}{2} (1 - P)^2 \]

→ Imperfections suppressed quadratically
→ Dependences on \(\lambda, \theta \) strongly reduced

\[T_{1 \times 2} = T_1 T_2 \]

(Almost) perfect polarization

X-SM geometry

\[P_x \approx 1 - \frac{1}{2} (1 - P)^2, \quad T_{1\times2} = T_1 T_2 \]

Solid-state polarizer with quartz or sapphire substrate

- Finite minimum angle \(\theta \), thus \(q \)
- \(U_{\text{Substrate}} \geq U_{\text{Fe}} - |\mu_n B| \)
- Strongly reduced \(\lambda, \theta \) dependence
- Compact \(\rightarrow \) high magnetizing field

\[\langle P \rangle = 99.7\% \]

\[\langle P \rangle = 99.8\% \]

[Petoukhov et al, Rev. Sci. Instrum. 94 (2023) 023304]
Polarization analysis

3He spin filters 3He(n,p) 3H: $\sigma_{\uparrow\downarrow} \gg \sigma_{\uparrow\uparrow}$

- $\sigma_{c,0} = 5333(7)$ barn, $\sigma_{\uparrow\downarrow}/\sigma_{c,0} = 1.010(32)$

\[T_{\uparrow\uparrow} = \frac{1}{2} \exp(-[\text{He}]\sigma_c(\lambda)(1 \mp P_{\text{He}})) \]

- For unpolarized beam: $O(\lambda) = \frac{0.0733 \ p \ \lambda}{\text{bar cm } \AA}$
 \[P_n(\lambda) = \tanh(O(\lambda)P_{\text{He}}) \]
 \[T_n(\lambda) = \exp(-O(\lambda)) \cosh(-O(\lambda)P_{\text{He}}) \]

- Relaxation of hyperpolarized 3He polarization:
 \[P_{\text{He}}(t) = P_{\text{He}}(t) \exp\left(-\frac{t}{t_0}\right) \]

- In-situ flipping of 3He spin \rightarrow separation of neutron spin flip efficiency and polarization:
 \[PA = \frac{n_{\uparrow\uparrow} - n_{\uparrow\downarrow}}{n_{\uparrow\uparrow} + n_{\uparrow\downarrow}}, \quad 2f - 1 = \frac{n_{\uparrow\uparrow} - 2n_{\uparrow\downarrow} + n_{\uparrow\uparrow}}{n_{\uparrow\uparrow} - n_{\uparrow\downarrow}} \]

Performance

- \simAngle-independent

\[P_n \xrightarrow{O \rightarrow \infty} 1. \quad P_n > 99.99\% \text{ demonstrated:} \]

- Typical numbers: $P_{\text{He}}(0) > 75\%, \ t_0 > 400 \text{ h}$, P_{He} loss per in-situ 3He spin flip: $\lesssim 10^{-5}$

C. Klauser, PhD thesis (2013)

\[l = 14 \text{ cm} \]
\[P_{\text{He}} = 1.69 \text{ bar} \]
\[\chi^2 / \text{ndf} = 18.16 / 23 \]
\[\text{Prob} = 0.749 \]
\[P_{\text{He}} = 0.7096 \pm 0.0048 \]
\[\text{Depol} = 2.335e-05 \pm 7.816e-06 \]
Precise detector solid angle?

Infinitely small and far away

- No integration needed:
 \[\cos(\angle(P_n, p_e)) = 1 \text{ (if aligned)} \]
- No statistics
- **Approximation:** tracking detector →
 \[\cos(\angle(P_n, p_e)) \text{ known for each track} \]

Infinitely large

- Integration = mean over hemisphere:
 \[\langle \cos(\angle(P_n, p_e)) \rangle_{2\pi} = \frac{1}{2} \]
- Full statistics (but dilution factor 1/2)
- **Realization:** Strong magnetic field

In between → Monte Carlo

Requires accurate knowledge of neutron distribution and detector response in space

Neutron beams are large, divergent, inhomogeneous
The beauty of (strong) magnetic fields

- Defined solid-angle integration
- Full beam averaging (if large detector)
- Collection of full statistics
- Transport to detectors far away from beam
- Confinement of backscattered particles, too
- Momentum manipulation by magnetic mirror effect

\[\sin \vartheta \sin \vartheta_0 = B/B_0 \]

- Magnetic focusing and selection:
 \[\sin \vartheta_C = \sqrt{B_0/B_1} \]
- Magnetic alignment/collimation
 \(\rightarrow \) Reduced backscattering probability
 \(\rightarrow \) Improved resolution of electrostatic filters
- Magnetic mirror \(\rightarrow \) part of backscattered particles reflected
Parameters of the SM, Sensitivities to $\lambda = g_A / g_V$

\[a = \frac{1 - \lambda^2}{1 + 3\lambda^2} \]

\[A = -2 \frac{\lambda(1 + \lambda)}{1 + 3\lambda^2} \]

\[B = 2 \frac{\lambda(\lambda - 1)}{1 + 3\lambda^2} \]

\[C = x_C (A + B) \]

\[\tau = \frac{4908.6(1.9) \text{ s}}{|V_{ud}|^2(1 + 3\lambda^2)} \]

(Lecture I)

τ and λ necessary to determine SM parameter V_{ud}

- a, A most sensitive for determination of λ
- B, C most suitable to search for new physics

(assuming similar experimental accuracy)
\[\mathcal{A} : \quad \text{d}W \propto 1 + a \frac{p_e p_\nu}{E_e E_\nu} \]

e–ν asymmetry and proton spectrum

- Correlation as spatial asymmetry:
 \[a \propto \frac{n_{\uparrow \uparrow} - n_{\uparrow \downarrow}}{n_{\uparrow \uparrow} + n_{\uparrow \downarrow}} \]

\[a > 0 \quad \text{Proton spectrum shifted to higher energy} \]
\[a < 0 \quad \text{Proton spectrum shifted to lower energy} \]

Two principles of measurement

- Proton spectrum (Example aSPECT)

\[a = +0.3 \]
\[a = -0.103(4) \quad \text{PDG 2008} \]

- **e–p Asymmetry** (example aCORN)

\[\nu \]

\[|p_\nu| = \frac{Q - E_e^{\text{rel}}}{c} \]

→ Asymmetry I versus II from \(p \)-TOF

\[p_{\nu, \perp} \]

\[p_{\nu} \]

\[p_e \]

\[p_{e, \perp} \]
\(a : \text{aSPECT} \)

Integral proton spectrum from MAC-E filter

- Magnetic Adiabatic Collimation \(2.2 \, \text{T} \rightarrow 0.44 \, \text{T} \) sharpens transmission function of electrostatic filter

\[
\begin{align*}
a & = -0.10402(82) \quad (b = 0) \\
\text{and correlated } (a, b) \text{ analysis}
\end{align*}
\]

Beck et al., arXiv:2308.16170

- Stringent requirements on magnetic field, electrodes work functions, detector energy dependence, vacuum, high-voltage stability
\(\langle a \rangle = -0.10859 (125^{\text{stat}})(133^{\text{sys}}) \)

Wietfeldt et al, arXiv:2306.15042
Beta asymmetry A

Early experiments

- Coincidence of electron and proton (needed close to reactor) to reduce background
 - Proton detection by electron multiplication
 - Electron detection by scintillator

→ Small decay volume, low rate
→ Not compatible with 2 symmetric detectors
→ One needs to collect all protons in order to integrate out neutrino:

$$
\frac{dW}{dE} \propto (\sigma_n | E_e, \Omega_e, \Omega_\nu) \\
\propto \left\{ 1 + a \frac{p_e p_\nu}{E_e E_\nu} + \frac{\sigma_n}{\sigma_e} \left(A \frac{p_e}{E_e} + B \frac{p_\nu}{E_\nu}\right) \right\}
$$

Incomplete collection → systematics from B and a

Example: First measurement of A ($\& B, D$)

$A = -0.114(19), \frac{\Delta A}{A} = 17%$

[Burgy et al, Phys. Rev. 120 (1960) 1829]
New possibilities and new concept

- Cold neutron guide of 120 m length
- Supermirror polarizer

PERKEO spectrometer:

- Longitudinal magnetic field (1.5 T, 1.7 m)
 - Strongly enhanced counting rate
 - Strongly improved signal/background
 - Accurate knowledge of solid angle
 - Reconstruction of electron backscatter events after transport to other detector

- Downstream detector difficult to shield
- Field maximum in center, decreases to both sides to avoid traps
 - Magnetic mirror effect: 10% correction on asymmetry
 - (Inverse) magnetic mirror effect reduces backscattering
- Background subtraction with shutter after pol
 - Downstream beam-related BG not included

\[A = -0.1146(19), \frac{\Delta A}{A} = 1.7\% \]
Improvements to PERKEO

- Magnetic field perpendicular to neutron beam (1.1 T, Ø of coils 1 m)
 - Detectors at larger distance to beam → Signal/Background in ROI 20:1
 - Decays only close to maximum → Reduced magn. mirror effect

- Two shutters for background estimation
 - Upstream shutter → only environmental background
 - Downstream shutter → (enhanced) beam related background
 - Strong n and γ sources along beam line → same shape as from downstr. shutter (multiple scattering to reach detectors)

→ Extrapolation of background spectrum above beta endpoint into fit region

$A = -0.1189(12), \frac{\Delta A}{A} = 1.0\%$

[A: PERKEO II [1997]

A: PERKEO II [1997 → 2002 → 2013]

Improvements [1997] → [2002]

- Cutter for long wavelengths (>13Å)
 - Suppression of lowly polarized neutrons
- “Horse” for polarization measurement, non-depolarizing chopper
 - Separately benchmarked against 3He spin filter and polarized proton spin filter
- Improved beam line and shielding
 - Beam stop further away
 - Removal of scattered neutrons
 → Sg/beam-related Bg improved by factor 3

Improvements [2002] → [2013]

- X-SM polarizer, 3He spin filters
 - Strongly reduced spatial and λ_n dependence, correction and error
- New beam line PF1B, 4 × higher flux
 - Part traded for systematics (X-SM)
- Further improved beam line and shielding
 → Sg/beam-related Bg improved by factor 8

<table>
<thead>
<tr>
<th></th>
<th>[1997]</th>
<th>[2002]</th>
<th>[2013]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cor [%]</td>
<td>+2.34</td>
<td>+1.4</td>
<td>+0.30</td>
</tr>
<tr>
<td>Err [%]</td>
<td>0.75</td>
<td>0.31</td>
<td>0.14</td>
</tr>
<tr>
<td>Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>+1.55</td>
<td>+0.5</td>
<td>+0.10</td>
</tr>
<tr>
<td>Detcor [%]</td>
<td>0.45</td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>Detector response</td>
<td>−0.20</td>
<td>−0.24</td>
<td>−0.13</td>
</tr>
<tr>
<td>Detcor [%]</td>
<td>0.25</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>Other systematics</td>
<td>+0.10</td>
<td>0.17</td>
<td>−0.06</td>
</tr>
<tr>
<td>Detcor [%]</td>
<td>0.10</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>Total systematics</td>
<td>0.91</td>
<td>0.51</td>
<td>0.31</td>
</tr>
<tr>
<td>Detcor [%]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiative cor.</td>
<td>+0.09</td>
<td>0.05</td>
<td>−0.11</td>
</tr>
<tr>
<td>Statcor [%]</td>
<td>0.42</td>
<td>0.45</td>
<td>0.38</td>
</tr>
<tr>
<td>Total error</td>
<td>1.0</td>
<td>0.68</td>
<td>0.49</td>
</tr>
<tr>
<td>A</td>
<td>−0.1189(12)</td>
<td>−0.1189(7)</td>
<td>−0.11972(±53)</td>
</tr>
</tbody>
</table>

A: PERKEO III

• PERKEO II finally limited by statistics. Strong cut in beam divergence to minimize background

• PERKEO III: Accept full beam divergence, long decay volume → Factor 100 in event rate

• Large beam → can accept large gyration radii, lower magnetic field (160 mT), normal conducting

• Detectors can be placed far from beam compared to PERKEO I. However, larger area detectors, downstream detector difficult to shield
A: PERKEO III

• PERKEO II finally limited by statistics. Strong cut in beam divergence to minimize background

• PERKEO III: Accept full beam divergence, long decay volume \rightarrow Factor 100 in event rate

• Large beam \rightarrow can accept large gyration radii, lower magnetic field (160 mT), normal conducting

• Detectors can be placed far from beam compared to PERKEO I. However, larger area detectors, downstream detector difficult to shield

A: PERKEO III

2 m
A: PERKEO III

- **Almost monochromatic beam → X-SM polarizer not needed, only single bender**
 - Polarization analysis with opaque 3He spin filters, exact mapping of full beam
- **Pulsed beam suppresses beam-related background**
- **Improved detector homogeneity**
- **Blind analysis:** Polarization, Asymmetry and Mirror effect analyzed by independent people, combined only at the end

![Diagram of PERKEO III setup]

- **Longitudinal field → increased magnetic mirror effect and uncertainty ($0.45 \cdot 10^{-3}$)**

<table>
<thead>
<tr>
<th></th>
<th>[2013] Cor [10^{-3}]</th>
<th>Err [10^{-3}]</th>
<th>[2019] Cor [10^{-3}]</th>
<th>Err [10^{-3}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>+3.0</td>
<td>1.4</td>
<td>+9.07</td>
<td>0.64</td>
</tr>
<tr>
<td>Background</td>
<td>+1.0</td>
<td>1.0</td>
<td>-0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Detector response</td>
<td>-1.3</td>
<td>2.6</td>
<td>-1.32</td>
<td>0.63</td>
</tr>
<tr>
<td>Other systematics</td>
<td>-0.6</td>
<td>0.2</td>
<td>+4.61</td>
<td>0.45</td>
</tr>
<tr>
<td>Total systematics</td>
<td>3.1</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiative cor.</td>
<td>-1.1</td>
<td>0.5</td>
<td>-1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Statistics</td>
<td>3.8</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total error</td>
<td>4.9</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-0.11972^{+53}_{-65}</td>
<td>$-0.11985(21)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: Status

PDG world average of A

$A = -0.1135(14)$, $\frac{\Delta A}{A} = 1.2\%$

[Yerozolimsky et al (PNPI): Traditional]

$A = -0.1160(15)$, $\frac{\Delta A}{A} = 1.3\%$

[Brown et al: UCNA \rightarrow next slide]
• First measurements of any angular correlation with UCN

• 1 T solenoidal spectrometer with 3 m long UCN decay volume

• Polarization:
 ➢ passage through 7 T magnet
 ➢ AFP spin flipper with single-pass spin-flip efficiency > 99.9%

• Detectors:
 ➢ MWPC (position reconstruction and backscattering identification)
 ➢ Plastic scintillator (timing and energy reconstruction)
Systematics

Foil at end of UCN decay trap
- a\ffect\ backscattering and angular acceptance
- Measurements (and MC) with different foils

Calibration
- neutron activated Xe gas with MWPC for homogeneity, conversion electron lines for linearity

Backscattering classification
- Energy cut on MWPC to statistically assign Type 2/3 events to the correct side, reduces Monte Carlo corrections for backscattering events

cos θ correction
- High energy, low pitch angle events more apt to trigger the detectors and carry higher asymmetry information
- Increase measured asymmetry

\[
A = -0.12054(44)^{\text{stat}}(68)^{\text{syst}}, \quad \frac{\Delta A}{A} = 0.7\%
\]

Super-ratio method
- Suppression of spin-dependent trap filling

\[
A_{SR} = \frac{1 - \sqrt{R}}{1 + \sqrt{R}}
\]
\[B: \quad \text{d}W \propto 1 + B \frac{\langle \sigma_n \rangle p_\nu}{\sigma_n E_\nu} \]

Just the same with \(\nu \) detector...

- Opposite e, p detectors: \(p_\nu \)
 reconstruction very sensitive to \(E_e \)

- Measures combination of \(B, a \) and \(A \)
- \(K_B, K_a, K_A \) to be calculated, \(a \) and \(A \) from other experiments

- Dominating systematics:
 - Polarization
 - \(E_e \) energy resolution

\[B = 0.9801 \pm 0.0025^{\text{stat}} \pm 0.0038^{\text{sys}} \]

Serebrov et al., JETP 86 (1998) 1074
B: \[dW \propto 1 + B \frac{\langle \sigma_n \rangle p_0}{\sigma_n E_0} \]

Just the same with \(\nu \) detector...

- Opposite e, p detectors: \(p_0 \) reconstruction very sensitive to \(E_e \)
 - Only used for cross-checks in PERKEO II analysis

- e, p in same detector:
 - \(p_0 \) emitted in opposite direction, reconstruction insensitive to \(E_e \)
 - Result of PERKEO II

PERKEO II B (with X-SM)

- \(A \) and \(a \) enter (here in fit function)
- Very clean systematics in principle
- **But:** Very different statistical weight of the two detectors (because of high voltage instabilities) \(\rightarrow \) inefficient compensation of beam displacement in arithmetic mean

\[B = 0.9802 \pm 0.0034^{\text{stat}} \pm 0.0036^{\text{sys}} \]

$$B: \quad dW \propto 1 + B \frac{\langle \sigma_n \rangle p_\nu}{\sigma_n E_\nu}$$

Just the same with ν detector...

- Opposite e, p detectors: p_ν
 - reconstruction very sensitive to E_e
 - Only used for cross-checks in PERKEO II analysis

- e, p in same detector:
 - p_ν emitted in opposite direction, reconstruction insensitive to E_e
 - Result of PERKEO II

PERKEO II B (with X-SM)

- A and a enter (here in fit function)
- Very clean systematics in principle
- But: Very different statistical weight of the two detectors (because of high voltage instabilities) \rightarrow inefficient compensation of beam displacement in arithmetic mean

$$B = 0.9802 \pm 0.0034_{\text{stat}} \pm 0.0036_{\text{sys}}$$

Proton asymmetry parameter C

- Not included in alphabet
- Proton detection sufficient, in principle
- Related to A and B by kinematics: $C = x_C (A + B)$, $x_C = 0.27484$
 → Access to B without coincidence measurement

$C: \quad dw \propto 1 + C \frac{\langle \sigma_n \rangle p_p}{\sigma_n p_p}$

So far only: Perkeo II B

- Coincident e-p detection:
 - Distinguish p from e by TOF
 - Suppresses background, too
 - a, A, B enter (here in fit function)
- Need to integrate out electron

 $p_{\uparrow, \downarrow}^1 = \int_{E_e} \left(Q_{\uparrow, \downarrow}^{p1,e1}(E_e) + Q_{\uparrow, \downarrow}^{p1,e2}(E_e) \right) dE_e$

 $\alpha^1 = \frac{p_{\uparrow}^1 - p_{\downarrow}^1}{p_{\uparrow}^1 + p_{\downarrow}^1}$

 - Proton efficiency drops out but electron energy integral in two different detectors
 - Electron threshold + lower cutoff by HV
 - Fit theoretical spectra and extrapolate
 - Dominating systematics: E_e calibration & resolution
 - Only one proton detector used for result

\[C = -0.2377^{+0.0010}_{-0.0024}\text{stat}^{+0.0024}_{-0.0010}\text{sys} \]

How to go further – PERC

• **PERKEO III**: Accept full beam divergence, long decay volume \rightarrow Factor 100 in event rate

• Yet, beam divergence limits length of decay volume. Large beam, low field \rightarrow Large detectors \rightarrow PERC:

 ![Diagram of PERKEO III and PERC](image)

• **Conserve neutron density** by keeping them in guide. Strong field to collect charged decay products
• **Magnetic filter for improved systematics** – compensates absence of upstream detector
• **Pulsed neutron beam** to avoid regions of ill-defined spectrometer response (not needed for all observables)

PERC

- Tunable selector field 3...6 T
- **Secondary spectrometers** optimized for observable
- Observables:
 - Electrons: A, b
 - Protons: a, C
 - Coincidences: no
- Target sensitivity: $\mathcal{O}(10^{-4})$
 - Individual systematic effects for PERC estimated $< 10^{-4}$
 - Depends on secondary spectrometer
- Installation in progress at FRM-II

Wang et al, EPJ Web of Conferences 219 (2019) 04007
BRAND

Measure all correlations simultaneously

• Only existing project with electron tracking and measurement of transversal electron polarisation

• Access to yet unmeasured correlations

• Independent systematics for measured correlations \((a, b, A, B, D)\)

• Based on measurement of \(N, R\) at PSI

• **Target statistical sensitivity:**

 ➢ \(5 \cdot 10^{-4}\) for coefficients involving electron polarisation

 ➢ A few times \(10^{-5}\) for \(a, A, B, D\)

• First tests of prototype components at PF1B, R&D ongoing

Reminder from start of lecture:

\[
\frac{dW(\langle \sigma_n \rangle, \langle \sigma_e \rangle | E_e, \Omega_e, \Omega_v)}{E_e E_v} \propto G_E(E_e) \cdot \\
\left\{1 + a \frac{p_e p_v}{E_e E_v} + \ldots\right\}
\]
How to go further – ANNI @ ESS (proposal)

Pulsed beams are good for us!

- **Spatial localization** of neutron pulse
 - Separation of beam-related background
 - Separation of ill-defined spectrometer response

- **Separation by neutron wavelength**
 - Velocity dependence of signal and systematics
 - Time-dependent neutron optics
 - Loss-free monochromatization

- **Time localization** of neutron pulse
 - Improved signal/background
 - Suppression of background and drifts with different time constant than signal

ANNI simulated gain factors (@ 5 MW)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Facility</th>
<th>Gain Event rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPDGamma</td>
<td>FnPB (SNS)</td>
<td>27</td>
</tr>
<tr>
<td>PERC</td>
<td>MEPHISTO (FRM II)</td>
<td>15</td>
</tr>
<tr>
<td>PERKEO III</td>
<td>PF1B (ILL)</td>
<td>17</td>
</tr>
<tr>
<td>aSPECT</td>
<td>PF1B (ILL)</td>
<td>1.3</td>
</tr>
</tbody>
</table>

TS et al., EPJ Web of Conferences 219 (2019) 10003
Abele et al, Physics Reports 1023 (2023) 1–84
Status and outlook

Presently most precise experiment

• $\Delta a/a = 8 \times 10^{-3}$ [aSPECT 2020]
• $\Delta b = 0.02$ [PERKEO III 2020]
• $\Delta A/A = 1.7 \times 10^{-3}$ [PERKEO III 2019]
• $\Delta B/B = 5 \times 10^{-3}$ [Serebrov 98, PERKEO II 2008]
• $\Delta C/C = 1\%$ [PERKEO II 2007]
• $\Delta D = 2 \times 10^{-4}$ [emiT 2012]
• $\Delta R = 0.013$ [Kozela 2012]

Ongoing projects

• Nab @ SNS: a, b
 ➢ First data taken
 ➢ Goals: $\Delta a/a \approx 0.1\%$, $\Delta b \approx 0.003$
 ➢ Proposal for pNab

• PERC @ FRM-II: A, b, a, C
 ➢ Installation in progress
 ➢ Goals: a few times 10^{-4}

• BRAND @ ILL / ESS: $a, A, B, D, H, L, N, R, S, U, V$
 ➢ R&D ongoing
 ➢ Goals: a, A, B, D : not limited by stat (few times 10^{-5})
 H, L, \ldots (with transversal electron polarization): 5×10^{-4}