Precision measurements of neutron beta decay II – Correlations –

Torsten Soldner Institut Laue-Langevin Grenoble, France

École Joliot-Curie

Experimentalist's approach on neutron decay

• What can we measure? $n ightarrow p + e + \overline{ u}_{ m e}$

- Neutron: spin direction σ_n
- Proton: momentum p_p
- Electron: momentum p_e , spin direction σ_e
- Neutrino: momentum $p_{
 u} = -p_p + p_e$

• Possible correlations (this lecture):

- 6 twofold: $\sigma_n p_e, \sigma_n p_{\nu}, p_e p_{\nu}, ...$
- 4 threefold: $\sigma_n(\sigma_e imes p_e)$, ...
- 5 fourfold: $(\sigma_e p_e) (p_e p_v)$, ...
- 1 fivefold: $(\sigma_e p_e) \sigma_n (p_e imes p_{
 u})$

+ Deformation of electron spectrum (Fierz term)

• Further observables:

- Lifetime (lecture I)
- Rare decay modes: $n \rightarrow H + \overline{\nu}_e$ (branching ratio, H atomic states)

 $n \rightarrow p + e + \overline{\nu}_e + \gamma$ (branching ratio, even more correlations)

→ 2 vectors (p_e, p_v) & 2 axial vectors σ_n, σ_e

Content

- Principles & Concepts & Tools & Examples
 PERKEO n: The quest for accuracy
- Status and outlook

The neutron alphabet

• σ_n, p_e, p_v : Oriented neutrons, momenta of electron and neutrino

 $\mathrm{d}W(\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle | E_{e}, \Omega_{e}, \Omega_{\boldsymbol{\nu}}) \propto G_{E}(E_{e}) \cdot$

$$\left\{1 + a\frac{\boldsymbol{p}_{e}\boldsymbol{p}_{v}}{E_{e}E_{v}} + b\frac{m_{e}}{E_{e}} + \frac{\langle \boldsymbol{\sigma}_{n} \rangle}{\sigma_{n}} \left(A\frac{\boldsymbol{p}_{e}}{E_{e}} + B\frac{\boldsymbol{p}_{v}}{E_{v}} + D\frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{v}}{E_{e}E_{v}}\right)\right\}$$

• σ_e, p_e, p_v : Spin and momentum of electron, momentum of neutrino

$$dW(\langle \boldsymbol{\sigma_e} \rangle | \boldsymbol{E_e}, \boldsymbol{\Omega_e}, \boldsymbol{\Omega_v}) \propto \boldsymbol{G_E(E_e)} \cdot \left\{ 1 + a \frac{\boldsymbol{p_e} \boldsymbol{p_v}}{\boldsymbol{E_e} \boldsymbol{E_v}} + b \frac{\boldsymbol{m_e}}{\boldsymbol{E_e}} + \frac{\langle \boldsymbol{\sigma_e} \rangle}{\boldsymbol{\sigma_e}} \left(\boldsymbol{G} \frac{\boldsymbol{p_e}}{\boldsymbol{E_e}} + \boldsymbol{H} \frac{\boldsymbol{p_v}}{\boldsymbol{E_v}} + \boldsymbol{K} \frac{\boldsymbol{p_e}}{\boldsymbol{E_e} + \boldsymbol{m_e}} \frac{\boldsymbol{p_e} \boldsymbol{p_v}}{\boldsymbol{E_e} \boldsymbol{E_v}} + L \frac{\boldsymbol{p_e} \times \boldsymbol{p_v}}{\boldsymbol{E_e} \boldsymbol{E_v}} \right)$$

- σ_n, σ_e, p_e : Oriented neutrons, momentum and spin of electron $dW(\langle \sigma_n \rangle, \langle \sigma_e \rangle | E_e, \Omega_e) \propto G_E(E_e) \cdot$ $\left\{ 1 + b \frac{m_e}{E_e} + \frac{\langle \sigma_n \rangle}{\sigma_n} A \frac{p_e}{E_e} + \frac{\langle \sigma_e \rangle}{\sigma_e} \left(G \frac{p_e}{E_e} + N \frac{\langle \sigma_n \rangle}{\sigma_n} + Q \frac{p_e}{E_e + m_e} \frac{\langle \sigma_n \rangle p_e}{\sigma_n E_e} + R \frac{\langle \sigma_n \rangle \times p_e}{\sigma_n E_e} \right) \right\}$
- $\sigma_n, \sigma_e, p_e, p_v$: Oriented neutrons, spin and momentum of electron, momentum of and neutrino $dW(\langle \sigma_n \rangle, \langle \sigma_e \rangle | E_e, \Omega_e, \Omega_v) \propto G_E(E_e) \cdot$ $\left\{ 1 + \frac{\text{All terms}}{\text{from above}} + \frac{\langle \sigma_n \rangle}{\sigma_n} \left(S \frac{\langle \sigma_e \rangle}{\sigma_e} \frac{p_e p_v}{E_e E_v} + T \frac{p_v}{E_v} \frac{\langle \sigma_e \rangle p_e}{\sigma_e E_e} + U \frac{p_e}{E_e} \frac{\langle \sigma_e \rangle p_v}{\sigma_e E_v} + V \frac{\langle \sigma_e \rangle p_e}{\sigma_e E_v} + W \frac{\langle \sigma_e \rangle p_e}{\sigma_e E_v} - \frac{p_e \times p_v}{\sigma_e E_v} \right) \right\}$

[Jackson, Treiman, Wyld, Phys. Rev. 106 (1957) 517; Ebel&Feldman, Nucl. Phys. 4 (1957) 213] Further terms in NLO [Ando et al, Phys. Lett B 595 (2004) 250; Gudkov et al, Phys. Rev. C 73 (2006) 035501]

Challenges in $n \rightarrow pev$, $m_n - m_p - m_e = 782 \text{ keV}$

Proton energy $E_p < 751 \text{ eV}$

→Sensitive to small electric fields
 ✓Control space charges
 ✓Control work functions of surfaces
 ✓Control field leakages

\rightarrow Acceleration needed prior to detection

\rightarrow Optimized detectors

Low noise, low thresholds, tiny dead layers

· multinging

✓ Specific technologies

Electron energy $E_e < 782 \text{ keV}$

 \rightarrow Range of background from (n, γ) , beta decays \checkmark Shielding

- ✓ Magnetic fields for Signal/Background
- ✓ Coincidences (ΔE -E detectors, proton)
- →Exposed to backscattering by detector and scattering by windows/materials
 - ✓ Backscatter-suppression or detection
 - \checkmark Proper design of spectrometer

Long lifetime $au_n pprox 880~{ m s}$

 \rightarrow Low decay rate, low statistics

 \rightarrow Low relative decay rate for cold neutrons $\sim 1000 \text{ m/s:} \sim 10^{-7}/\text{m}$

 \rightarrow All other neutrons can create background

- \succ Captures (n, γ) , ...
- → Scattering from apertures $\sim 10^{-3}$

Detector geometry – principles

$$W(\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle | E_{e}, \Omega_{e}, \Omega_{\nu}) \propto G_{E}(E_{e}) \cdot \left\{ 1 + a \frac{\boldsymbol{p}_{e} \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \boldsymbol{P} \left(A \frac{\boldsymbol{p}_{e}}{E_{e}} + B \frac{\boldsymbol{p}_{\nu}}{E_{\nu}} + D \frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}} \right) \right\}$$
$$K_{a} = \int_{\text{eDet,pDet}} G_{E}(E_{e}) \frac{\boldsymbol{p}_{e} \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}} dE_{e} d\Omega_{e} d\Omega_{\nu} \qquad K_{A} = \int_{\text{eDet,pDet}} G_{E}(E_{e}) \frac{\boldsymbol{p}_{e}}{E_{e}} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$K_{b} = \int_{\text{eDet,pDet}} G_{E}(E_{e}) \frac{m_{e}}{E_{e}} dE_{e} d\Omega_{e} d\Omega_{\nu} \qquad K_{B} = \int_{\text{eDet,pDet}} G_{E}(E_{e}) \frac{\boldsymbol{p}_{\nu}}{E_{\nu}} dE_{e} d\Omega_{e} d\Omega_{\nu}$$

 $K_{i,\parallel}$: || to detectors' surfaces, \perp to plane of drawing

d

 $K_{i,\perp}$: \perp to $K_{i,\parallel\nu}$ i.e. in plane of drawing (not necessarily \perp on detector surface)

			•
K	е	р	ер
b	K	Κ	K
а	0	0	K
A , \perp	Κ	Κ	Κ
<i>A</i> ,∥	0	0	0
B, \perp	0	Κ	K
B, \parallel	0	0	0
D, \bot	0	0	0
D, \parallel	0	0	Κ

$$= \int_{e\text{Det,pDet}} G_E(E_e) \frac{1}{E_e}$$

Often analysis in function of E_e (i.e. $K_i = K_i(E_e)$, no integration over E_e)

$$N_{e,p} \propto 1 + aK_a + bK_b + P(AK_A + BK_B + DK_D)$$

Asymmetries with neutron spin:
$$\alpha = \frac{N_{e,p}(P) - N_{e,p}(-P)}{N_{e,p}(P) + N_{e,p}(-P)} = \frac{P(AK_A + BK_B + DK_D)}{1 + aK_a + bK_b}$$

Goals of detector design:

 Maximize sensitivity to wanted coefficient i \succ Maximize K_i

 $K_{D} = \int_{e\text{Det.pDet}} G_{E}(E_{e}) \frac{p_{e} \times p_{\nu}}{E_{e}E_{\nu}} dE_{e} d\Omega_{e} d\Omega_{\nu}$

- \blacktriangleright Maximize statistics
- Suppress other coefficients \succ Suppress by symmetry or minimize $K_{i\neq i}$

$$\mathrm{d}W \propto 1 + D \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{\boldsymbol{n}}} \frac{\boldsymbol{p}_{\boldsymbol{e}} \times \boldsymbol{p}_{\boldsymbol{\nu}}}{E_{\boldsymbol{e}} E_{\boldsymbol{\nu}}}$$

Principle Set-Up

$$\mathrm{d}W \propto 1 + D \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{\boldsymbol{n}}} \frac{\boldsymbol{p}_{\boldsymbol{e}} \times \boldsymbol{p}_{\boldsymbol{\nu}}}{E_{\boldsymbol{e}} E_{\boldsymbol{\nu}}}$$

Principle Set-Up

 $\kappa_{\xi} = \frac{K_{\xi}}{1 + aK_{z} + hK_{z}}$

 $\alpha = \frac{n_{ep}^{\odot} - n_{ep}^{\otimes}}{n_{en}^{\odot} + n_{en}^{\otimes}} = D\boldsymbol{P}\boldsymbol{\kappa}_{\boldsymbol{D}}$

$$dW(\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle | E_{e}, \Omega_{e}, \Omega_{v}) \propto G_{E}(E_{e}) \cdot \left\{ 1 + a \frac{\boldsymbol{p}_{e} \boldsymbol{p}_{v}}{E_{e} E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{n}} \left(A \frac{\boldsymbol{p}_{e}}{E_{e}} + B \frac{\boldsymbol{p}_{v}}{E_{v}} \right) + D \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{n}} \frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{v}}{E_{e} E_{v}} \right\}$$

P violating, asymmetry with spin flip

Principle Set-Up

$$\kappa_{\xi} = \frac{K_{\xi}}{1 + aK_a + bK_b}$$

$$\alpha = \frac{n_{ep}^{\odot} - n_{ep}^{\otimes}}{n_{ep}^{\odot} + n_{ep}^{\otimes}} = D\mathbf{P}\mathbf{\kappa}_{D} + A\mathbf{P}\mathbf{\kappa}_{A} + B\mathbf{P}\mathbf{\kappa}_{B}$$

$$dW(\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle | E_{e}, \Omega_{e}, \Omega_{v}) \propto G_{E}(E_{e}) \cdot \left\{ 1 + a \frac{\boldsymbol{p}_{e} \boldsymbol{p}_{v}}{E_{e} E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{n}} \left(A \frac{\boldsymbol{p}_{e}}{E_{e}} + B \frac{\boldsymbol{p}_{v}}{E_{v}} \right) + D \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{n}} \frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{v}}{E_{e} E_{v}} \right\}$$

P violating, asymmetry with spin flip

Principle Set-Up

 $D = \frac{\alpha^{00} - \alpha^{01} - \alpha^{10} + \alpha^{11}}{4\mathbf{P}\kappa_{\rm P}^{00}}$

$$\kappa_{\xi} = \frac{K_{\xi}}{1 + aK_a + bK_b}$$

Suppression of parity-violating correlations if detector setup and neutron volume share two orthogonal mirror planes

Breaking of symmetry \rightarrow Systematic effects

D: Detector design – Minimizing and maximizing

D: Status

Trine

D

• Electron tracking

Leading systematics:

- Inhomogeneity of MWPC
- Asymmetry of beam profile
- Asymmetry of scintillator $D = (-2.8 \pm 6.4^{\text{stat}} \pm 3.0^{\text{syst}}) \cdot 10^{-4}$

emiT

• Fully exploits geometrical optimization

Chupp et al, Phys.Rev. C 86 (2012) 035505

 $D = (-0.94 \pm 1.89^{\text{stat}} \pm 0.97^{\text{syst}}) \cdot 10^{-4}$

Measurements of "0" systematically easier than absolute measurements:

• One "just" needs a symmetric detector

TS et al, Phys. Lett. B 581 (2004) 49

• Most systematic effects scale with the measured asymmetry

Theory says: EDMs are more sensitive than TRI searches in *n* decay ... Θ

How to measure spin asymmetries

$$dW(\boldsymbol{P_n}|\boldsymbol{E_e},\boldsymbol{\Omega_e}) \propto G_E(\boldsymbol{E_e}) \cdot \left(1 + A \frac{\boldsymbol{P_n p_e}}{\boldsymbol{E_e}}\right)$$

(observe only electron
$$\rightarrow \Omega_{\nu}$$
 integrated out. $\frac{\langle \sigma_n \rangle}{\sigma_n} \equiv P_n$)

$$N_{\text{free}}(E_e) = \text{const} \cdot G_E(E_e) \cdot \int_{\text{Det}} \{1 \pm AP_n \beta(E_e) \cos(\measuredangle(P_n, p_e))\} d\Omega_e \qquad \frac{p_e}{E_e} = \beta(E_e) \equiv \frac{v_e}{c}$$
$$k = k(\text{Det}, \text{Beam}) = \left(\int_{\text{Det}} \cos(\measuredangle(P_n, p_e)) d\Omega_e \right)_{\text{Beam}}$$
$$\frac{N_{\text{free}} - N_{\text{free}}}{N_{\text{free}} + N_{\text{free}}} (E_e) = A\beta(E_e) kP_n$$

Det ↑ ↑

We need:

- Polarization P_n
- Identical polarization (and amount of neutrons) in both states
- Precise detector solid angle with respect to polarized neutrons k
- Electron energy $\beta = \beta(E_e)$

If flipping efficiency (probability that a spin gets flipped) f < 1:

• Polarization after flipper: $P_{\downarrow} = -(2f - 1)P_{\uparrow}$

Resulting asymmetry:

$$\frac{N_{\uparrow\uparrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\uparrow}} = A\beta k P_n f \cdot \left[1 - A\beta k P_n (1 - f) + \mathcal{O}\left((A\beta k P_n (1 - f))^2\right)\right]$$

Sensitive to neutron flux variations in first order!

How to measure spin asymmetries

$$dW(\boldsymbol{P_n}|\boldsymbol{E_e},\boldsymbol{\Omega_e}) \propto G_E(\boldsymbol{E_e}) \cdot \left(1 + A \frac{\boldsymbol{P_n p_e}}{\boldsymbol{E_e}}\right)$$

(observe only electron
$$\rightarrow \Omega_{\nu}$$
 integrated out. $\frac{\langle \sigma_n \rangle}{\sigma_n} \equiv P_n$)

$$N_{\uparrow\uparrow}(E_{e}) = \text{const} \cdot G_{E}(E_{e}) \cdot \int \{1 + AP_{n}\beta(E_{e})\cos(\measuredangle(P_{n}, p_{e}))\}d\Omega_{e} \qquad \frac{p_{e}}{E_{e}} = \beta(E_{e}) \equiv \frac{v_{e}}{c}$$
$$bet_{2}^{1}$$
$$k_{i} = k(\text{Det } i, \text{Beam}) = \left(\int_{\text{Det } i}\cos(\measuredangle(P_{n}, p_{e}))d\Omega_{e}\right)_{\text{Beam}}$$
$$\frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}}(E_{e}) = A\beta(E_{e})kP_{n}$$

Det2

Insensitive to

neutron flux

variations!

But to Det1≠Det2

We need:

- Polarization P_n
- 2 identical detectors (same efficiency, same response)
- Precise detector solid angle with respect to polarized neutrons k
- Electron energy $\beta = \beta(E_e)$

With different detectors k_i : $\bar{k} \equiv \frac{k_1 + k_2}{2}$, $\Delta_{k,rel} \equiv \frac{k_1 - k_2}{k_1 + k_2}$ • Resulting asymmetry: $\frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = A\beta \bar{k} P_n \cdot \left[1 - A\beta \bar{k} P_n \Delta_{k,rel} + \Omega\left((A\beta \bar{k} P_n \Delta_{k,rel})^2\right)\right]$

How to measure spin asymmetries

Two detectors + neutron spin flipping

Det1 $A_{\exp,1} \equiv \frac{N_{\uparrow\uparrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\uparrow}} = A\beta k_1 P_n f$

Det2

$$A_{\exp,2} \equiv \frac{N_{\uparrow\downarrow} - N_{\downarrow\downarrow}}{N_{\uparrow\downarrow} + N_{\downarrow\downarrow\downarrow}} = -A\beta k_2 P_n f$$

Note: for D this applies, too:

→Measures both signs of the asymmetry at the same time

• Analysis by detector, arithmetic average of both results $A = \frac{A_1 + A_2}{2}$ or joint fit

 \rightarrow Suppresses neutron flux fluctuations in first order

→ Compensates some systematics (e.g. shift of beam towards one detector), depending on experiment

• Super-ratio of detector rates:

$$A_{\rm SR} = \frac{1 - \sqrt{R}}{1 + \sqrt{R}} = A\beta kP_n, \text{ with } R = \frac{N_{\uparrow\uparrow}N_{\downarrow\downarrow}}{N_{\downarrow\uparrow}N_{\downarrow\downarrow}}$$

 \rightarrow Neutron flux fluctuations fully cancel

• Both have similar sensitivity to Δ_k and to f < 1

Cold neutron polarization in a nutshell

Neutron polarization and systematics

Beam average may not be relevant!

$\left(\int_{\text{Det}} \boldsymbol{P}_{\boldsymbol{n}} \boldsymbol{p}_{\boldsymbol{e}} d\Omega_{\boldsymbol{e}}\right)_{\text{Beam}} \neq \langle \boldsymbol{P}_{\boldsymbol{n}} \rangle_{\text{Beam}} \left(\int_{\text{Det}} \boldsymbol{p}_{\boldsymbol{e}} d\Omega_{\boldsymbol{e}}\right)_{\text{Beam}}$

Neutron beams are large, divergent, inhomogeneous

Solutions

1) Detector averages beam (requires mag field)

(Almost) perfect polarization

Polarization analysis

³He spin filters ³He(*n*,*p*) ³H: $\sigma_{\uparrow\downarrow} \gg \sigma_{\uparrow\uparrow}$

• $\sigma_{c,0} = 5333(7)$ barn, $\sigma_{\uparrow\downarrow}/\sigma_{c,0} = 1.010(32)$

$$n \xrightarrow{\uparrow \uparrow \uparrow \uparrow} B \xrightarrow{B} T_{\uparrow \uparrow} = \frac{1}{2} \exp(-[\text{He}] l\sigma_{c}(\lambda) (1 \mp P_{\text{He}}))$$

- For unpolarized beam: $O(\lambda) = \frac{0.0733 \, p \, l \, \lambda}{\text{bar cm } \text{\AA}}$ $P_n(\lambda) = \tanh(O(\lambda)P_{He})$ $T_n(\lambda) = \exp(-O(\lambda)) \cosh(-O(\lambda)P_{He})$
- Relaxation of hyperpolarized ³He polarization: $P_{\text{He}}(t) = P_{\text{He}}(t) \exp\left(-\frac{t}{t_0}\right)$
- In-situ flipping of ³He spin → separation of neutron spin flip efficiency and polarization:

$$PA = \frac{n_{\uparrow\uparrow\uparrow} - n_{\uparrow\downarrow\downarrow}}{n_{\uparrow\uparrow\uparrow} + n_{\uparrow\uparrow\downarrow\downarrow}}, \ 2f - 1 = \frac{n_{\uparrow\uparrow\uparrow} - 2n_{\downarrow\uparrow\uparrow} + n_{\uparrow\uparrow\downarrow}}{n_{\uparrow\uparrow\uparrow} - n_{\uparrow\downarrow\downarrow}}$$

Performance

- ~Angle-independent
- $P_n \xrightarrow[1,0001]{0 \to \infty} 1. P_n > 99.99\%$ demonstrated:

• Typical numbers: $P_{\rm He}(0) > 75\%$, $t_0 > 400$ h, $P_{\rm He}$ loss per in-situ ³He spin flip: $\leq 10^{-5}$

Precise detector solid angle?

Infinitely small and far away

• No integration needed:

 $\cos(\measuredangle(P_n, p_e)) = 1$ (if aligned)

- No statistics
- Approximation: tracking detector $\rightarrow \cos(\measuredangle(P_n, p_e))$ known for each track

In between → Monte Carlo

Requires accurate knowledge of neutron distribution and detector response in space

Neutron beams are large, divergent, inhomogeneous

Infinitely large

- Integration = mean over hemisphere: $\langle \cos(\measuredangle(P_n, p_e)) \rangle_{2\pi} = \frac{1}{2}$
- Full statistics (but dilution factor 1/2)
- *Realization:* Strong magnetic field

The beauty of (strong) magnetic fields

- Defined solid-angle integration
- Full beam averaging (if large detector)
- Collection of full statistics
- Transport to detectors far away from beam
- Confinement of backscattered particles, too
- Momentum manipulation by magnetic mirror effect

Magnetic mirror effect

- Magnetic focusing and selection: $\sin \vartheta_{\rm C} = \sqrt{B_0/B_1}$
- Magnetic alignment/collimation

 →Reduced backscattering probability
 →Improved resolution of electrostatic filters
- Magnetic mirror → part of backscattered particles reflected

Parameters of the SM, Sensitivities to $\lambda = g_{\rm A}/g_{\rm V}$

au and λ necessary to determine SM parameter V_{ud}

- *a*, *A* most sensitive
 for determination
 of λ
- B, C most suitable to search for new physics

(assuming similar experimental accuracy)

-1.26

(Lecture I)

 $\boldsymbol{G}: \quad \mathrm{d}\boldsymbol{W} \propto 1 + a \frac{\boldsymbol{p}_{e} \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}}$

e-v asymmetry and proton spectrum

• Correlation as spatial asymmetry:

a > 0 Proton spectrum shifted to higher energy a < 0 Proton spectrum shifted to lower energy

Two principles of measurement

e-*p* Asymmetry (example aCORN)

a: aSPECT

Integral proton spectrum from MAC-E filter

 Magnetic Adiabatic Collimation 2.2 T → 0.44 T sharpens transmission function of electrostatic filter

2

Cold bore

Proton detector

44444

Magnetic field E16 (E×B)

E15 (E×B optional)

 $U_{\rm DC} = -15 \text{ kV} \quad \text{o-}$ $B_{\rm DC} = 4.4 \text{ T}$

Beta asymmetry A

Early experiments

- Coincidence of electron and proton (needed close to reactor) to reduce background
 - Proton detection by electron multiplication
 - Electron detection by scintillator
- →Small decay volume, low rate
- \rightarrow Not compatible with 2 symmetric detectors
- →One needs to collect all protons in order to integrate out neutrino:

$$dW(\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle | \boldsymbol{E}_{\boldsymbol{e}}, \boldsymbol{\Omega}_{\boldsymbol{e}}, \boldsymbol{\Omega}_{\boldsymbol{\nu}}) \\ \propto \left\{ 1 + a \frac{\boldsymbol{p}_{\boldsymbol{e}} \boldsymbol{p}_{\boldsymbol{\nu}}}{\boldsymbol{E}_{\boldsymbol{e}} \boldsymbol{E}_{\boldsymbol{\nu}}} + \frac{\langle \boldsymbol{\sigma}_{\boldsymbol{n}} \rangle}{\sigma_{\boldsymbol{n}}} \left(A \frac{\boldsymbol{p}_{\boldsymbol{e}}}{\boldsymbol{E}_{\boldsymbol{e}}} + B \frac{\boldsymbol{p}_{\boldsymbol{\nu}}}{\boldsymbol{E}_{\boldsymbol{\nu}}} \right) \right\}$$

Incomplete collection \rightarrow systematics from *B* and *a*

A: PERKEO [1986]

New possibilities and new concept

- Cold neutron guide of 120 m length
- Supermirror polarizer

PERKEO spectrometer:

- Longitudinal magnetic field (1.5 T, 1.7 m)
 - Strongly enhanced counting rate
 - Strongly improved signal/background
 - Accurate knowledge of solid angle
 - Reconstruction of electron backscatter events after transport to other detector

- Downstream detector difficult to shield
- Field maximum in center, decreases to both sides to avoid traps

Magnetic mirror effect: 10% correction on asymmetry

- (Inverse) magnetic mirror effect reduces backscattering
- v/c dependence Background subtraction with shutter after pol
 - Downstream beam-related BG not included

 $A = -0.1146(19), \frac{\Delta A}{A} = 1.7\%$

A: PERKEO II [1997]

Improvements to PERKEO

- Magnetic field perpendicular to neutron beam (1.1 T, Ø of coils 1 m)
 - Detectors at larger distance to beam
 Signal/Background in ROI 20:1
 - Decays only close to maximum
 Reduced magn. mirror effect
- Two shutters for background estimation

- ➤ Downstream shutter → (enhanced) beam related background
- > Strong n and γ sources along beam line
 - → same shape as from downstr. shutter (multiple scattering to reach detectors)
- →Extrapolation of background spectrum above beta endpoint into fit region

A: PERKEO II [1997 \rightarrow 2002 \rightarrow 2013]

Improvements [1997] → [2002]

- Cutter for long wavelengths (>13Å)
 Suppression of lowly polarized neutrons
- "Horse" for polarization measurement, nondepolarizing chopper
 - Separately benchmarked against ³He spin filter and polarized proton spin filter
- Improved beam line and shielding
 - Beam stop further away
 - Removal of scattered neutrons
 - \rightarrow Sg/beam-related Bg improved by factor 3

Improvements [2002] \rightarrow [2013]

- X-SM polarizer, ³He spin filters
 - Strongly reduced spatial and λ_n dependence, correction and error
- New beam line PF1B, 4 × higher flux
 Part traded for systematics (X-SM)

[Abele et al, Phys. Lett. B 407 (1997) 212]

[Reich et al, Nucl. Instr. Meth. A 440 (2000) 535, Abele et al, Phys. Rev. Lett. 88 (2002) 211801]

[Mund et al, Phys. Rev. Lett. 110 (2013) 172502]

Further improved beam line and shielding
 → Sg/beam-related Bg improved by factor 8

	[1997]		[2002]		[2013]	
	Cor [%]	Err [%]	Cor [%]	Err [%]	Cor [%]	Err [%]
Polarization	+2.34	0.75	+1.4	0.31	+0.30	0.14
Background	+1.55	0.45	+0.5	0.25	+0.10	0.10
Detector response	-0.20	0.25	-0.24	0.25	-0.13	0.26
Other systematics	+0.10	0.10	+0.29	0.17	-0.06	0.02
Total systematics		0.91		0.51		0.31
Radiative cor.	+0.09	0.01	+0.09	0.05	-0.11	0.05
Statistics		0.42		0.45		0.38
Total error		1.0		0.68		0.49
A	-0.11	89(12)	-0.11	89(7)	-0.119	$72(^{+53}_{-65})$

• PERKEO II finally limited by statistics. Strong cut in beam divergence to minimize background

• **PERKEO III**: Accept full beam divergence, long decay volume \rightarrow Factor 100 in event rate

- Large beam \rightarrow can accept large gyration radii, lower magnetic field (160 mT), normal conducting
- Detectors can be placed far from beam compared to PERKEO I. However, larger area detectors, downstream detector difficult to shield

• PERKEO II finally limited by statistics. Strong cut in beam divergence to minimize background

• **PERKEO III**: Accept full beam divergence, long decay volume \rightarrow Factor 100 in event rate

- Large beam \rightarrow can accept large gyration radii, lower magnetic field (160 mT), normal conducting
- Detectors can be placed far from beam compared to PERKEO I. However, larger area detectors, downstream detector difficult to shield

- Pulsed beam suppresses beam-related background
- Improved detector homogeneity

Almost monochromatic beam → X-SM

polarizer not needed, only single bender

filters, exact mapping of full beam

• Blind analysis: Polarization, Asymmetry and Mirror effect analyzed by independent people, combined only at the end

• Longitudinal field → increased magnetic mirror effect and uncertainty $(0.45 \cdot 10^{-3})$

	[2013]		[2019]	
	Cor [10 ⁻³]	Err [10 ⁻³]	Cor [10 ⁻³]	Err [10 ⁻³]
Polarization	+3.0	1.4	+9.07	0.64
Background	+1.0	1.0	-0.27	0.11
Detector response	-1.3	2.6	-1.32	0.63
Other systematics	-0.6	0.2	+4.61	0.45
Total systematics		3.1		1.03
Radiative cor.	-1.1	0.5	-1.0	0.1
Statistics		3.8		1.40
Total error		4.9		1.74
A	-0.119	$72(^{+53}_{-65})$	-0.119	85(21)

PDG world average of A

• Yerozolimsky et al (PNPI): Traditional

A: UCNA

- First measurements of any angular correlation with UCN
- 1 T solenoidal spectrometer with 3 m long UCN decay volume
- Polarization:
 - > passage through 7 T magnet
 - > AFP spin flipper with single-pass spinflip efficiency > 99.9%

Be-coated

mylar foil

- Detectors:
 - > **MWPC** (position reconstruction and backscattering identification)
 - > Plastic scintillator (timing and energy reconstruction)

[Brown et al, Phys. Rev. C 97 (2018) 035505] [Mendenhall et al, Phys. Rev. C 87 (2013) 032501(R)] [Plaster et al, Phys. Rev. C 86 (2012) 055501] [Liu et al, Phys. Rev. Lett. 105 (2010) 181803] [Pattie et al, Phys. Rev. Lett. 102 (2009) 012301]

Systematics

Foils at end of UCN decay trap

- affect backscattering and angular acceptance
- Measurements (and MC) with different foils

Calibration

 neutron activated Xe gas with MWPC for homogeneity, conversion electron lines for linearity

Backscattering classification

• Energy cut on MWPC to statistically assign Type 2/3 events to the correct side, reduces Monte Carlo corrections for backscattering events

$\cos \theta$ correction

- High energy, low pitch angle events more apt to trigger the detectors and carry higher asymmetry information
- Increase measured asymmetry

 $A = -0.12054(44)^{\text{stat}}(68)^{\text{syst}}, \frac{\Delta A}{\Lambda} = 0.7\%$

Super-ratio method

 Suppression of spindependent trap filling

$$A_{\rm SR} = \frac{1 - \sqrt{R}}{1 + \sqrt{R}}$$

	% C	% Unc.	
	2011-2012	2012-2013	
$\Delta_{\cos\theta}$	- 1.53	- 1.51	0.33
$\Delta_{\text{backscattering}}$	1.08	0.88	0.30
Energy recon.			0.20
Depolarization	0.45	0.34	0.17
Gain			0.16
Field nonunif.			0.12
Muon veto			0.03
UCN background	0.01	0.01	0.02
MWPC efficiency	0.13	0.11	0.01
Statistics			0.36
Theory	Corrections [1	1,12,26-29]	
Recoil Order	- 1.68	- 1.67	0.03
Radiative	-0.12	-0.12	0.05

Schumann et al., Phys. Rev. Lett 99 (2007) 191803

Det1

 $\mathrm{d}W \propto 1 + C \frac{\langle \sigma_n \rangle}{p_p}$

Proton asymmetry parameter *C*

- Not included in alphabet
- Proton detection sufficient, in principle
- Related to A and B by kinematics:
 C = x_C(A + B), x_C = 0.274 84
- Det2

 \rightarrow Access to *B* without coincidence measurement

So far only: Perkeo II B

- Coincident e-p detection:
 - Distinguish p from e by TOF
 - Suppresses background, too
 - *a*, *A*, *B* enter (here in fit function)
- Need to integrate out electron

$$\begin{split} p_{\uparrow\uparrow,\Downarrow}^{1} &= \int_{E_{e}} \left(Q_{\uparrow\uparrow,\Downarrow}^{\text{p1,e1}}(E_{e}) + Q_{\uparrow\uparrow,\Downarrow}^{\text{p1,e2}}(E_{e}) \right) \mathrm{d}E_{e} \\ \alpha^{1} &= \frac{p_{\uparrow\uparrow}^{1} - p_{\uparrow\uparrow}^{1}}{p_{\uparrow\uparrow}^{1} + p_{\uparrow\uparrow}^{1}} \end{split}$$

- Proton efficiency drops out but electron energy integral in two different detectors
- Electron threshold + lower cutoff by HV
- ightarrow Fit theoretical spectra and extrapolate
- \rightarrow Dominating systematics: E_e calibration & resolution
- Only one proton detector used for result

 $C = -0.2377 \pm 0.0010^{\text{stat}} \pm 0.0024^{\text{sys}}$

Schumann et al., Phys. Rev. Lett. 100 (2008) 151801

Det1

- Conserve neutron density by keeping them in guide. Strong field to collect charged decay products
- Magnetic filter for improved systematics compensates absence of upstream detector
- Pulsed neutron beam to avoid regions of ill-defined spectrometer response (not needed for all observables)

BRAND

Bodek et al, EPJ Web of Conf. 219 (2019) 04001 Abele et al, Phys. Rep. 1023 (2023) 1

Measure all correlations simultaneously

- Only existing project with electron tracking and measurement of transversal electron polarisation
- Access to yet unmeasured correlations
- Independent systematics for measured correlations (*a*, *b*, *A*, *B*, *D*)
- Based on measurement of N, R at PSI
- Target statistical sensitivity:

> 5 · 10⁻⁴ for coefficients involving electron polarisation
 > A few times 10⁻⁵ for *a*, *A*, *B*, *D*

 First tests of prototype components at PF1B, R&D ongoing

Reminder from start of lecture: $dW(\langle \boldsymbol{\sigma_n} \rangle, \langle \boldsymbol{\sigma_e} \rangle | E_e, \Omega_e, \Omega_v) \propto G_E(E_e) \cdot \left\{ 1 + a \frac{\boldsymbol{p_e p_v}}{E_e E_v} + \cdots \right\}$

How to go further – ANNI @ ESS (proposal)

Pulsed beams are good for us!

- ξ Spatial localization of neutron pulse
 - Separation of beam-related background
 - Separation of ill-defined spectrometer response

λ Separation by neutron wavelength

- Velocity dependence of signal and systematics
- Time-dependent neutron optics
- Loss-free monochromatization
- τ Time localization of neutron pulse
 - Improved signal/background
 - Suppression of background and drifts with different time constant than signal

ANNI simulated gain factors (@ 5 MW)

Experiment	Facility	Gain Event rate
NPDGamma	FnPB (SNS)	27
PERC	MEPHISTO (FRM II)	15
PERKEO III	PF1B (ILL)	17
aSPECT	PF1B (ILL)	1.3 2.8

TS et al., EPJ Web of Conferences 219 (2019) 10003 Abele et al, Physics Reports 1023 (2023) 1–84

Status and outlook

Presently most precise experiment

- $\Delta a/a = 8.10^{-3}$ [aSPECT 2020]
- Δ*b* = 0.02 [PERKEO III 2020]
- ΔA/A = 1.7·10⁻³ [PERKEO III 2019]
- $\Delta B/B = 5 \cdot 10^{-3}$ [Serebrov 98, PERKEO II 2008]
- Δ*C*/*C* = 1% [PERKEO II 2007]
- △*D* = 2·10⁻⁴ [emiT 2012]
- Δ*R* = 0.013 [Kozela 2012]

Ongoing projects

• Nab @ SNS: a, b

First data taken

- ➢ Goals: Δa/a ≈ 0.1%, Δb ≈ 0.003
- Proposal for pNab
- PERC @ FRM-II: A, b, a, C
 Installation in progress
 - \succ Goals: a few times 10⁻⁴
- BRAND @ ILL / ESS: a, A, B, D, H, L, N, R, S, U, V
 - ► R&D ongoing
 - Goals: a, A, B, D : not limited by stat (few times 10⁻⁵) H, L, ... (with transversal electron polarization): 5·10⁻⁴

Hayen et al, Phys. Rev. C 107 (2023) 065503 Baeßler et al, J. Phys. G 41 (2014) 114003